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Electrohydrodynamic patterns in macroion dispersions under a strong electric field
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Recent reports have shown that initially homogeneous solutions of charged colloidal particles or polyelec-
trolytes may develop instabilities under strong electric field. In particular, striking dynamical structures form-
ing quasi-stationary zigzag patterns have been observed, under strong ac electric field, when these macroion
dispersions are confined into a slab cell. We develop in this paper the basis of a theoretical approach aimed at
describing the large scale, long time electrokinetic phenomena occurring, under strong electric field, within a
dispersion of macroions in a simple electrolyte of high ionic strength. We assume that the macroions’ charges
can be described, at large length scales, by a smooth charge profile that merely generates some small pertur-
bations on the already out-of-equilibrium situation of a simple electrolyte under strong electric field. This
allows us to overcome the complexity of the nonlinear electrokinetic equations by expanding them around the
far-from-equilibrium system with no macroion. This approach is therefore to be contrasted with the classical
theory for which the perturbations of the ionic concentrations are evaluated as linear responses to a ‘‘weak’’
applied electric field with respect to their equilibrium distributions around a macroion at rest. We show here
that the out-of-equilibrium ionic distributions in the solution are perturbed over large length scales in the
vicinity of the macroions, which leads to the breakdown of~equilibrium! electroneutrality in the solution far
beyond the Debye length scales. The electrical body force arising from the coupling between this large scale
charge density and the applied electric field eventually triggers some electrohydrodynamic flows which, in
turn, convect the very slowly diffusing macroions in the solution. Numerical resolutions of the model in two
analytical limit regimes show that this process is able to select quasistationary dynamical patterns from
preexisting inhomogeneous distributions of macroions, in good agreement with experimental observations. In
addition, we show, using simple dynamical scaling arguments, that this nonlinear coupling between the mac-
roion density fluctuations and the associated electrohydrodynamic flows dominates the large scale, long time
stochastic dynamics of the macroion distribution, suggesting that it might also be responsible, through a
noise-driven process, for the primary segregation itself.@S1063-651X~97!13710-2#

PACS number~s!: 82.70.Dd, 47.54.1r, 82.45.1z, 83.80.Gv
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I. INTRODUCTION

The motivation for this work originated from striking ob
servations done by Mitnik and co-workers@1,2# while study-
ing DNA capillary electrophoresis. In principle, the use
microcapillaries, filled with a neutral polymer solution a
sieving medium, allows one to apply strong electric fie
and, thus, achieve fast electrophoretic separation@3#. How-
ever, Mitnik et al. discovered that solutions of monodisper
large DNA fragments become inhomogeneous once s
jected to an electric field stronger than a few tens of V/c
This electric-field-induced DNA segregation, occurring ev
in the presence of neutral polymer chains used as sie
medium, leads to ‘‘artificial’’ peaks on electrophoregram
when one attempts to separate DNA fragments longer th
few kilobase pairs. The phenomenon is therefore, to dat
major limitation to this otherwise very promising techniq
for molecular genetics. The experimental observations
come even more puzzling when the DNA solution is co
fined not in a capillary but between two glass plates, with
ac electric field applied parallel to the plates@2,4#. Striking

*Present address: Center for Studies in Physics and Biology,
Rockefeller University, Box 25, 1230 York Ave., New York, NY
10021-6399. Electronic address: isambert@eds2.rockefeller.ed
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zigzag patterns form in the confined DNA solution as d
picted in Figs. 1 and 2. Interestingly, very similar patter
have also been observed by other groups with quite diffe
charged colloidal systems such as polystyrene spheres@5# or
even China clay@6#. This demonstrates that the underlyin
physics is a very general phenomenon, i.e., independen
the microscopic nature of the colloidal particles or the po
electrolytes.

We present in this paper our interpretation of the physi
origin of the pattern formation in these macroion dispersio
under strong electric field. Some of the general ideas fou
ing this analysis have already been outlined@4#. In the re-
mainder of the Introduction we first recall the main expe
mental features of the observed electric-field-induc
patterning of DNA solutions confined in a quasi-tw
dimensional~2D! geometry. We then briefly review and dis
cuss the classical theoretical approach to electrophores
macroions in electrolyte solutions of high ionic strength, b
fore outlining the general ideas of the theoretical appro
we propose in this paper.

Typical experiments are performed in a slab cell fill
with 30 mg/ml of l-DNA labeled with a fluorescent dye
~separation between the parallel glass plates isa.10 mm!.
The l-DNA is a 16mm long DNA fragment@48.5 kilobase
~kbp!# taking a coil configuration (Rg.1 mm) in the buffer
solution used. Eachl-DNA molecule is known to carry

he
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56 5689ELECTROHYDRODYNAMIC PATTERNS IN MACROION . . .
roughly 50 000 elementary charges@7# that correspond to a
mean ‘‘fixed’’ charge concentration of about 1023 mol/l in
the coil region, 100 times smaller than the ionic strength
the buffer used~see @1# for further experimental details!.
0.01% of hydroxypropyl cellulose~HPC!, which adsorbs
strongly on the glass surfaces, is also added to supp
electro-osmosis. The ac field is then applied parallel to th
glass surfaces and the labeled molecules are observe
epifluorescence videomicroscopy perpendicularly to the s
cell. For strong ac fields~typically a few hundred V/cm a
100 Hz! the segregation gives rise to elongated ‘‘agg
gates’’ ~containing hundreds ofl-DNA fragments locally in
semidilute regime! tilted with regard to the direction of the
electric field. On a time scale of tens of seconds to a f
minutes, thesetilted aggregates are actually quasistationa
dynamical structureswithin which individual DNA mol-
ecules recirculate continuously~see arrows on Fig. 3!. The
circulation velocity increases rapidly with the amplitude
the electric field and can reach 100mm/s. The other main

FIG. 1. Top view of the horizontal slab cell containing 30mg/ml
of l-phage DNA~Appligene, Illkirch, F! in 1X TBE buffer~89 mM
Tris-boric acid, 2.5 mM EDTA!, containing 10mM ethidium bro-
mide for fluorescence visualization. A thickness of 1061 mm is
imposed by dispersing in the solution a few latex spheres of di
eter 10 mm ~Polysciences, Eppelheinm, D!. The negative image
~covering 300mm! is taken 2 min after the onset of a 300 V/cm
field, in the horizontal direction, at the frequency 2 Hz. The angle
tilt between the direction of the electric field and the elonga
aggregates isu.645° @2#.

FIG. 2. Similar experiment as in Fig. 1 with a 300 V/cm ac fie
in the horizontal direction, at the frequency 100 Hz. The angle
tilt between the direction of the electric field and the elonga
aggregates is nowu.660° @2#.
f
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features of these dynamical structures are the electric fi
‘‘threshold’’ above which they are seen to develop with
typically less than 1 min@1,2# and the precise value of the
angle of tilt with respect to the direction of the electric fie
@4#. The field threshold decreases when the frequency is l
ered or when the DNA molecular weight and, hence, the s
of the coil are increased@1,2#. As for the tilt angle, one
observes essentially two distinct values in the quasistation
dynamical regime developing over a few minutes after
onset of the instability @4#. At low frequency ~i.e.,
v/2p,10 Hz!, the periodic electrophoretic drift of the tilte
aggregate is typically larger than its width, and we meas
u.645° ~see Fig. 1 withv/2p52 Hz!. At higher fre-
quency, the periodic drift of the tilted aggregate is smal
than its width, and we haveu.660° ~see Fig. 2 with
v/2p5100 Hz!. Although tilted aggregates are often org
nized into zigzag patterns, this is not an essential featur
the instability since isolated tilted aggregates are also
served. Hopefully, these remarkable features should allow
to discriminate between different possible mechanisms
the physical origin of the phenomenon.

The description of electrophoresis of charged colloid
particles, i.e., their migration under electric field, has bee
theoretical challenge for most of this century originati
back in 1903 with the famous Smoluchowski expression g
ing the electrophoretic mobility, under weak electric field,
a charged sphere placed in a strong electrolyte of high io
strength~i.e., k21!l wherek21 is the Debye length andl
the sphere diameter! @8#. This states that the electric force o
the particle essentially balances the viscous shear indu
within the Debye layer, by the excess counterions migrat
under the electric field. Hence electrophoretic mobilities
sentially reflect the basic electrokinetic phenomena at
Debye length scale.

Due to the complexity of the nonlinear electrokinet
equations, the electrophoretic mobility of a macroion is u
ally evaluated analytically assuming that the equilibrium d
tributions of the coions and counterions remainunperturbed
under electric fieldin the frame of reference of the migratin
macroion. Electrophoresis being, however, an out-o
equilibrium~dissipative! phenomenon, the equilibrium distri
butions of the electrolyte ions not only ‘‘follow’’ the migrat
ing macroion but they are also perturbed in its vicinity und

-

f
d

f
d

FIG. 3. Sketch of a field-induced quasistationary dynamical
gregate containing typically hundreds of macroions. The direct
of circulation~arrows! changes with the sign of the tilt angleu. The
circulation velocity increases rapidly with increasing field, and c
reach 100mm/s close to the aggregate boundary.
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the application of an electric field.
The perturbation of the ionic distributionswithin the De-

bye layers has been classically analyzed in linear theo
taking the applied electric field as a small parameter as c
pared to the equilibrium electric fieldwithin the Debye layers
@9#. It has been proposed@5,6# that the resulting polarization
of the excess counterions in the Debye layers induces dip
dipole interactionsbetween the macroions, hence favori
macroscopic segregation of the dispersion forthermody-
namic reasons@10#. We believe, however, that this mech
nism alone is not sufficient to explain thedynamicalfeatures
of the long recirculating tilted aggregates observed exp
mentally @4#. We do not invoke any further~dipole-dipole!
interactions in this paper, concentrating instead on thedy-
namical processes originating from the perturbations of
ionic distributionsfar beyondthe Debye layers, that is a
length scales much larger thank21, the Debye length of the
electrolyte.

Classically, these small amplitude but large scale per
bations of the ionic distributions beyond the Debye layers
thought to be negligible in the limit of vanishing applie
electric field ~i.e., E0→0! since they appear to be of th
orderO(E0

2) as compared to the leading perturbations of
orderO(E0) @9#. In fact this ‘‘weak electric field’’ result is
contingent upon thea priori assumption that the equilibrium
state~i.e., E050! corresponds to the limit of the actual dy
namical problem at vanishing applied electric field~i.e.,
E0→0!. However, this limit may generally be singular, a
we will show, and the validity of a straightforward expansi
is questionable.

The plan of our discussion is the following: In Sec. II w
discuss the electroneutrality breakdown beyond the De
layer. We start by showing that the ionic concentrations
perturbed over large distances~i.e., wave vectorsk!k! in
the vicinity of a single undeformable macroion under ele
trophoretic migration. In the dc regime, we find in particu
that these perturbations correspond to a quasistationary
depletion—in the vicinity of the moving macroion—which
globally independentof the amplitude of the applied electri
field. We then argue that these out-of-equilibrium dynami
effects—better known in the context of electrodialysis w
fixed charged membranes—lead to the breakdown of~equi-
librium! electroneutrality beyond the Debye length scales

In Sec. III we discuss large scale electrohydrodynam
flows in quasi-2D confined geometry. This large scale vio
tion of strict electroneutrality eventually triggers, under ele
tric field, some electrohydrodynamic flows within the collo
dal dispersion that we first study in the large length sc
‘‘Hele-Shaw’’ approximation for a quasi-2D geometry. W
propose in this section that the two angles of tilt of the elo
gated aggregates observed experimentally in this geom
~i.e., 45° and 60° at respectively low and high frequen!
correspond in fact to two distinct dynamical limit regim
that can be described analytically.

In Sec. IV we discuss the electrohydrodynamic pattern
process. The general problem of the three-charged-spe
system ‘‘macroion, coion, and counterion’’ is discussed w
an emphasis on the separation of time scales between the
dynamics of the small ions and the slow dynamics of
macroion density fluctuations. Although we find that th
model does not exhibit ‘‘classical’’ instabilities~i.e., no ex-
es
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ponential amplification of small perturbations around a p
fectly uniform macroion distribution! we argue that the dy-
namics of the macroion density fluctuations is actua
highly sensitive, at long time and large length scales, to
presence of thermal noise. This suggests that the obse
electric-field-induced segregation might in fact correspond
a noise-driven instability as supported by some experime
evidence. We finally show, using numerical calculations, t
the large scale electrohydrodynamic flows originating in
presence of preexisting inhomogeneous distributions of m
roions are able todynamicallyselect some quasistationar
patterns in good agreement with those observed experim
tally. This is the strongest result supporting our approach

II. ELECTRONEUTRALITY BREAKDOWN BEYOND THE
DEBYE LAYER

Let us first consider a singleundeformablemacroion
within a strong electrolyte solution. Being concerned he
with the electrokinetic phenomena beyond the Debye la
we assume that the macroion charges can be describe
large length scalesk21@k21, by a smooth continuous con

centration profile,cM(rW,t). However, we also assume th
the essential electrokinetic phenomena within the De
layer of the actual macroion are satisfactorily taken into
count by a phenomenological electrophoretic mobility,mM ,
relating the average electric field at the macroion sca

^EW &M , to its electrophoretic velocityvW e5zMmM^EW &M ~con-
ventionally we take unsigned electrophoretic mobilities w
zM561 being the sign of the macroion’ charges!. In addi-
tion, we assume for simplicity that this primary electr
phoretic motion is perfectly ‘‘free-draining,’’ that is, with no
convective flow in the solution at larger scales than the D

bye length, i.e.,vW 50W in the fixed frame of reference at lengt
scalesk21@k21 @11#.

Our aim is now to evaluate the first convective correcti
to this primary free-draining electrophoretic motion asso
ated with the occurrence of electrohydrodynamic flows d
to the large scale breakdown of local electroneutrality in
solution surrounding the macroion. We will argue in th
section that this violation of electroneutrality at large leng
scales, i.e.,k21@k21, is related to the dynamical perturba
tion of the local salt concentration in the vicinity of the ma
roion under electrophoretic migration through the electrol
solution.

A. Electrokinetic equations

The uniform transportation of the concentration profi

cM(rW,t), describing the distribution of charges of theunde-
formablemacroion can be written as

] tcM1~vW e1vW h!•¹W cM50, ~2.1!

where vW e5zMmM^EW &M is the macroion electrophoretic ve

locity defined above andvW h is the ~weak! electrohydrody-
namic convection of the solution, at the scale of the mac
ion, that we would eventually like to evaluate.

The uniform electrophoretic drift of the macroion the
generates some out-of-equilibrium local perturbations of
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56 5691ELECTROHYDRODYNAMIC PATTERNS IN MACROION . . .
small coion and counterion concentrations since Poiss
equation~2.4! couples their conservation equations to t

concentration profile of the macroion charges,cM(rW,t).
Namely,

] tc11¹W •~2D1¹W c11m1c1EW 1c1vW !50, ~2.2!

] tc21¹W •~2D2¹W c22m2c2EW 1c2vW !50, ~2.3!

¹W •EW 5
e

««0
~c12c21zMcM !5

re

««0
~2.4!

wherec1(rW,t), c2(rW,t), D1 , D2 , andm1 , m2 are respec-
tively the local concentrations, diffusion constants and ab
lute values of the electrophoretic mobilities of the sm
monovalent ions.e is the elementary charge,««0 the dielec-

tric constant of the solution, andre(rW,t) is the local charge

density. Finally,vW is the local convection in the solution
surrounding the macroion~which we distinguish in this sec

tion from vW h , the convectionat the scale of the macroion!.

As this nonlinear system is also coupled—viavW —to some
hydrodynamic equation—e.g., a Stokes-like equation—
general problem is a difficult task that can only be tack
within some approximation scheme.

B. Approximation scheme

As we already discussed in the Introduction, the class
perturbative approach to handle such an electrokinetic
tem is to make an expansion around the equilibrium state~no
field applied! with respect to the amplitude of an applie
electric field, supposedly small compared to the equilibri
electric field within the Debye layers@9#. However, since we
are interested here in the electrohydrodynamic phenom
beyond the Debye layers—where the equilibrium elec
field vanishes—we cannot resort to this classical ‘‘low ele
tric field’’ approximation to overcome the complexity of th
coupled nonlinear electrokinetic equations.

The alternative scheme we propose is to start from
far-from-equilibrium regime corresponding to the electroly
solution with no macroion~i.e., c15c25cs! under some

~strong! finite electric fieldEW 0 . We then make an expansio
around this uniform electrokinetic regime—writin

EW 5EW 01dEW , c15cs1dc1 , etc.—with respect to the sup
posedly small perturbations due to the macroion prese
that we model, at large scales, by a smooth concentra

profile of monovalent charges, cM(rW,t)—with

u¹W cMumax;cMmax
/l , where l is the macroion typical size

l @k21. This approach requires in particularcMmax
!cs,

which corresponds to a solution of high ionic strength. Mo
precisely one can show~see below! that the ratiocMmax

/cs

can be taken as the small parameter to linearize the con
vation equations ~2.2! and ~2.3! ~i.e.,
dE/E0;dc1 /cs;dc2 /cs;cMmax

/cs!1! when the applied

electric fieldE0 verifies the following condition:

eE0l

kT
>1, ~2.5!
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which ensures that the out-of-equilibrium perturbatio

dominate the equilibrium distributionsdEW eq, dc2
eq anddc1

eq,
hence simplifying the discussion for the far-from
equilibrium regime. This condition typically holds fo
E0>100 V/cm with l .1 mm and cMmax

/cs.0.01 corre-
sponding to the experimental conditions reported for the
servations onl-DNA solutions@1,4,12#.

Then linearizing and combining equations~2.2! and~2.3!
to form the quantitiesS5dc11dc2 andR5dc22dc1 ,
and neglecting the convective term forS andR ~i.e., assum-

ing that uvW u!Ds /l .1000mm/s! we obtain

] tS2DsDS2msEW 0 •¹WR50, ~2.6!

] tR2DsDR2msEW 0 •¹W S2ms2cs¹W •dEW 50, ~2.7!

where we have assumed thatD15D25Ds and
m15m25ms5Dse/kT for simplicity @13#.

As we are interested in evaluating the~large scale! devia-
tions from electroneutrality, it is convenient to combine Eq
~2.6! and ~2.7! with Poisson’s equation

re5e(ZMcM2R)5««0¹W •dEW , which gives

] tS2DsDS5msEW 0 •¹W S zMcM2
re

e D , ~2.8!

zM] tcM2zMDsDcM2msEW 0 •¹W S

5
1

e
~Dsk

2re2DsDre1] tre!, ~2.9!

where we have introduced the expression for the De
length in the electrolyte,k215A««0kT/2e2cs.

Although the coupled linear system can be exactly solv
we will gain more physical insight into the experimental sit
ations of interest with some further approximations. At lar
length scales,k21@k21, and long time scales,t@1/Dsk

2,
we can evaluate the charge densityre from Eq. ~2.9! as

re5
e

Dsk
2 ~zM] tcM2zMDsDcM2msEW 0 •¹W S!. ~2.10!

Using this result in Eq.~2.8! we then obtain, at these
length and time scales~i.e., k21@k21 and t@1/Dsk

2!,

] tS2DsFDS1S eE0k21

kT D 2

]y
2SG5zMmsEW 0 •¹W cM

~2.11!

whereEW 0 is taken parallel to they-axis.
In most practical situations we haveeE0k21/kT!1,

which corresponds to a maximum electric fiel
E0max

5kT/(ek21), generally much higher than any attainab
experimental situation without turbulent heat convection
bubbles formation~e.g., E0max

523105 V/cm for T.300 K

andk21.1029 m!. Hence, Eq.~2.11!, describing the pertur-
bation of the local salt concentration, can generally be f
ther simplified to

] tS2DsDS5zMmsEW 0 •¹W cM . ~2.12!
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5692 56H. ISAMBERT, A. AJDARI, J-L. VIOVY, AND J. PROST
These additional approximations actually amount to p
tially decoupling the linear system~2.8! and~2.9!, which can
now be solved in two successive steps: we first evaluate
local perturbation of the salt concentration with Eq.~2.12!
@i.e., assuming electroneutrality in Eq.~2.8!# and the first
correction to electroneutrality is then obtained, at lar
length and time scales, by substituting the result forS into
Eq. ~2.10!.

C. Perturbation of the salt concentration

It is instructive to note that the perturbation in salt co
centration due to the macroion presence is easily solve
the particular case of a 1D distribution offixed charges,
cM(y), perpendicularly to the direction of the electric fie

EW 0 . If we also assume~for simplicity! a symmetric distribu-
tion around the origin, with a typical widthL, we find a local
quasi-stationary regime at long time scalest@L2/Ds , in the
region of the distribution~i.e., uyu<L!,

S~y,t !52
zMeE0

kT E
0

y

cM~y8!dy8, ~2.13!

which corresponds to an antisymmetric profile with a n
depletion of small ions on one side of the fixed distributi
and an excess of salt on the other side. Then these con
tration perturbations progressively extend by diffusion b
yond the region of the fixed distribution, i.e., over the ran
L<uyu<ADst. This well known phenomenon, called ele
trodialysis, is in fact widely used to deionize electrolyte s
lutions by applying an electric current across~fixed! charged
membranes.

We now turn to the case of a uniformly transported m

roion, cM(rW,t)[cM„rW2rW0(t)…, whererW0(t) is the origin of

the moving frame, i.e.,rẆ0(t)5vW e1vW h in Eq. ~2.1!. It is then
convenient to take the Fourier transform of Eq.~2.12! de-

fined asŜkW(t)5***S(rW,t)eikW•rWdrW, noticing that the Fourier
components of the macroion profile, ĈkW(t)

5***cM„rW2rW0(t)…eikW•rWdrW, can be written as

ĈkW~ t !5eikW•rW0~ t !E E E cM~rW8!eikW•rW8drW8[eikW•rW0~ t !CkW ,

~2.14!

whereCkW is independent of time for an undeformable migr
ing macroion. Hence, Eq.~2.12! becomes in Fourier space

] tŜkW1Dsk
2ŜkW52zMmsEW 0 • ikWCkWe

ikW•rW0~ t !. ~2.15!

We can similarly define the ‘‘transported’’ Fourier com
ponents of S—in the reference frame of the movin
macroion—as

SkW~ t !5e2 ikW•rW0~ t !ŜkW~ t !, ~2.16!

which allows us to express Eq.~2.15! as

] tSkW1 ikW•vW 0SkW1Dsk
2SkW52ZMmsEW 0 • ikWCkW , ~2.17!
r-
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wherevW 05rẆ0(t) is the velocity of the migrating macroion

At linear order in cMmax
/cs, only the leading term ofvW 0

should be kept in Eq.~2.17!, that is,vW 0.zMmMEW 0 .
For a dc field, the differential equation~2.17! is then trac-

table and gives, with the initial conditionsSkW(t50)5S
kW
0

,

SkW~ t !52
zMmsEW 0 • ikWCkW

Dsk
21zMmMEW 0 • ikW

~12e2~Dsk
21zMmMEW 0 • ikW !t!

1S
kW
0
e2~Dsk

21zMmMEW 0 • ikW !t. ~2.18!

At long time scales,t@1/Dsk
2, the transported Fourie

componentSkW(t) therefore becomes quasistationary,

SkW52
zMmsEW 0 • ikW

Dsk
21zMmMEW 0 • ikW

CkW . ~2.19!

For t@l 2/Ds , this implies that the electrophoretic migratio
of the macroion generates, in its vicinity, a quasistation
and asymmetric perturbation of the salt concentration. In p

ticular, we note thatS0W52(ms /mM)*cMdrW,0 corresponds
to a global~out-of-equilibrium! depletion in saltin the region
of the macroion. More precisely this requires taking the lim
t→` first and thenk→0 sincet@1/Dsk

2 is assumed in Eq.
~2.19!. In fact the total amount of salt is naturally conserv
in the system@i.e., ] tS0W(t)50], however, the salt exces
coming from the quasistationary depletion in the region
the moving macroion leads eventually to a vanishing
crease in salt concentration in the rest of the solution si
this is spread over a diverging volume at long time sca
One can get further physical insight into this salt deplet
once realizing that it merely compensates for the~local! con-
tribution of the moving macroion to the uniform total electr
current as is immediately seen in the formal case,ms5mM
and Ds50 ~thenS52cM!. Finally, note that this quasista
tionary depletion in salt concentration in the vicinity of
macroion in electrophoretic migration,S0W , is independent of
the applied electric field. Clearly, this type of singular dy-
namical behavior cannot be obtained within the class
theory of electrophoresis since the perturbations~from the
equilibrium state! are thenconstructedto be proportional to
the applied electric fieldE0 @15#.

D. Out-of-equilibrium deviations from electroneutrality

Once the salt profile has been determined, we then h
the first correction to large scale electroneutrality from E

~2.10! and] tcM.2zMmMEW 0 •¹W cM @that is, Eq.~2.1! at first
order incMmax

/cs],

re5««0¹W •dEW .««0S 2
mM

ms

EW 0 •¹W cM

2cs
2

zMkT

e2cs
DcM

2
EW 0 •¹W S

2cs
D . ~2.20!
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The first term in the right-hand side of Eq.~2.20!, depend-
ing explicitly oncM , is thedynamiccharge density arising in
close vicinity to themigrating macroion~i.e., with mMÞ0!
due to the time delay of the local electric relaxation whe
the macroionpasses throughthe electrolyte@electric relax-
ation time: 1/Dsk

2 in Eq. ~2.10!#.
The second term of Eq.~2.20!, depending also explicitly

oncM , is the approximate charge density at equilibrium~that

is for EW 050W ! due to the macroion presence.
The strong electric field condition,eE0l /kT>1, ensures

that the dynamic charges dominate the equilibrium char
at large scales,k21>l . In addition, Eq.~2.19! suggests tha
the first and the third terms in Eq.~2.20! have the same orde
of magnitude~asmM andms have usually similar numerica
values!, which allows us to check, with Eq.~2.20!, the con-
sistency of the linearization conditions dE/E0
;S/cs;cMmax

/cs!1 announced earlier.
However, the net bulk charge corresponding to the th

term, i.e.,

reS
52««0

EW 0 •¹W S
2cs

~2.21!

typically extends over micrometers into the solution s
rounding the moving macroion—that is, k21

;Ds /mME0.123 mm in Eq. ~2.19!. It is related to the
variation of electric conductivity in the vicinity of the mac
roion due to the perturbation of the salt concentration,S. One
can visualize this large scale charge densityreS

by stating
that the small cation and anion concentration profiles, wh
add up to give the total salt profile, become shifted in op

site directions underEW 0 by a tiny distanced8 scaling as

d85
««0E0

e2cs
5

eE0k21

kT
k21. ~2.22!

Although d8 is typically a picometric length, the associate
polarization of the salt profile is enough to enforce a qua

uniform electric current,W5(2cs1S)(EW 01dEW ), in the solu-
tion surrounding the macroion as Eq.~2.20! becomes

¹W •W.0 wherecM50. We will further argue in the following
section that this apparently weak violation of local elect
neutrality over micrometric scales, in the electrolyte solut
surrounding the macroion, is also sufficient to lead to s
tained electrohydrodynamic flows within the solution.

Finally we want to stress that the smooth macroion pro
approximation we made is merely a handy toy model

which the applied electric fieldEW 0 dominates at all scales i
the polyelectrolyte solution. A more physical model shou
explicitly take into account the usually much higher elect
field within the Debye layer. We expect, however, that t
electrokinetic phenomena beyond the Debye layer—wh
the electric field vanishes at equilibrium—should still corr
spond semiquantitatively to the physics we describe with
simple model.
e

s

d

-

h
-

i-

-
n
-

e
r

e
re
-
is

III. LARGE SCALE ELECTROHYDRODYNAMIC FLOWS
IN QUASI-2D CONFINED GEOMETRY

As already hinted at in the previous section, we exp
that the breakdown of~equilibrium! electroneutrality in the
solution surrounding the macroions generates, under str
electric field~to be estimated in the Sec. IV!, electrohydro-
dynamic flows within the macroion dispersion. These flo
are satisfactorily described by a Stokes-like equation at
ficiently low frequency of the electric field and in the regim
for which the vorticity diffuses faster than the electrophore
motion over the typical width,L, of the macroion aggregate
@16#. This corresponds ton/L2@v and n/L2@mME0 /L,
wheren5h/r.1026 m2/s is the dynamical viscosity andr
the mass density of the dispersion. For solutions ofl-DNA,
we find that this regime corresponds tov!n/L2.104 Hz
and E0!n/(mML).33104 V/cm, which clearly holds ex-
perimentally@1,4#.

Hence, in this limit, we have the following relation be

tween the~first order! local electric forcereS
EW 0 and the local

velocity vW in the electrolyte solution surrounding the macr
ions ~see Appendix A!:

hDvW 2¹W P1reS
EW 050W , ~3.1!

with reS
52««0EW 0 •¹W S/2cs , ~3.2!

whereh is the solvent viscosity andP the pressure in the

solution.vW also has to satisfy the incompressibility conditio

¹W •vW 50, and the boundary conditionsvW 50W , at the macroion
‘‘surfaces’’ and at the recipient walls~that is in the labora-

tory frame if no electro-osmosis occurs!. The flow vW turns
out to depend crucially on these boundary conditions for
dc regime that we have investigated until now, since
electric force behaves as a dipolelike term at large scale

this electrostatic analog equation@14#, i.e., ureS
EW 0u(kW );k as

k→0 @from the Fourier transform of Eq.~2.21! and Eq.
~2.19! at large scalesk21@Ds /mME0]. In particular we ex-
pect that experiments under different confined geomet
will develop, in general, different dynamical structures.

In this section we limit our study to the quasi-2D confin
geometry corresponding to the experimental conditions
scribed in the Introduction. In such a geometry one usua
makes the well-known Hele-Shaw approximation, whi
greatly simplifies the boundary condition problem on the t

confining plates. It states that if2¹W P1reS
EW 0 is essentially

independent ofz, the coordinate perpendicular to the confi
ing plates, then the Stokes equation simplifies to the follo
ing 2D form at scales larger than 2a, the separation distanc
between the plates:

2
2h

a2 vW 2D~x,y!2¹W 2DP1~reS
EW 0!2D50W , ~3.3!

wherevW 2D is in fact the maximum velocity of a Poiseuill

profile between the plates:vW (x,y,z)5(12z2/a2)vW 2D(x,y).
Since the Hele-Shaw approximation holds for leng

scales larger than 2a, we cannot consider individual macro
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ions anymore, assuming instead that macroion ‘‘aggregat
~or macroion density fluctuations!, somewhat larger than 2a,
exist within the Hele-Shaw cell. At these scales,h is then the
effective viscosity of the dispersion, which we assume to
independent of the macroion local concentration in a cr
approach~i.e., leading order incMmax

/cs!. We postpone fur-
ther discussion of the primary segregation process—from
dividual macroions to aggregates—to the next section.

For the sake of simplicity we will further assume in th
section that the formed aggregates are quasi-infinite ba
tilted with regard to the direction of the electric field in o
vious reference to the experimental observations. Let us
assume that a quasi-infinite tilted bandlike aggregate
width L has formed in the Hele-Shaw cell. One can defin
system of referenceXY with the Y axis parallel to the band
and we callu the angle of tilt of the band with regards to th
direction of the electric field (uuu,90°) ~see Fig. 4!.

We model this band as a whole by a smooth concentra
profile of monovalent charges,cM(X,t), independent ofY
and we use the fact that the primary electrokinetic pheno
enon under electric field is still a uniform migration of th
band with electrophoretic mobilitymM , as for the case of a
single macroion~see full discussion in the next section!. Al-
though the general electrokinetic problem is usually comp
when an ac electric field is applied, we will now see that
situation is actually tractable in the two following limit re
gimes:

If the electric field frequency is smaller than the rela
ation frequency of the salt perturbation, i.e.,v<Ds /L2, we
expect that the theoretical approach developed for a ma
ion in the dc regime should also hold for the bandlike agg
gate itself. In particular, formME0 sin(u)/L>Ds/L2>v, the
periodic drift of the band is larger than the bandwidth@i.e.,
mME0 /v>L/sin(u)# and a quasi-dc salt depletion develo
in the vicinity of the moving band. In practice this dc lim
regime will apply for bandlike aggregates under low fr
quency ac field.

If the periodic drift of the band is smaller than its wid
@i.e., mME0 /v<L/sin(u)# the associated perturbations
cM(X,t) are expected to be small. This will allow us to d
velop a perturbative approach for this ac limit regime cor
sponding to bandlike aggregates under high frequency
electric fields.

FIG. 4. Infinite band tilted with respect to the direction of the

electric fieldEW 0 . The electrohydrodynamic shearing at the~smooth!
interfaces of the deformable band is drawn schematically.
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Numerically, we find in fact,Ds /L2.mME0 /L.10 Hz,
which suggests that these regimes define, in practice
simple partition of the frequency spectrum in apparent c
cordance with the low frequency (v/2p,10 Hz) and high
frequency (v/2p.10 Hz) experimental regimes recalled
the Introduction@4#. We retain, however, in the following
discussion, the less specific denomination of ‘‘dc and
limit regimes.’’ Indeed we will argue in Sec. IV that thes
regimes also describe, at a given frequency, the physic
short length scalesk21,Dsk/v,mME0 /v, and large length
scalesk21.max(mME0 /v,ADs /v), respectively.

A. The dc limit regime

Let us first consider the dc limit regime and apply t
results, valid for a constant electric field, that we derived
Sec. II. We assume for simplicity that the aggregate is co
pletely deformable at scales much larger than the size of
individual macroions, so that the convective electrohydro
namics obeys Stokes equation~3.3! in the Hele-Shaw cell at
large scales, i.e.,k21.a. Taking the curl of Eq.~3.3! and

introducing the stream functionA ~vW 2D5¹W 3AW with

¹W •AW 50 whereAW 5Aẑ!, one finally gets in the transporte
Fourier space:

vW kW5
a2

2h

~2 ikW !3~2 ikW3EW 0!

k2 reS kW
. ~3.4!

Then using reSkW
5(««0 /2cs)( ikW•EW 0)SkW , and

SkW;2(ms /mM)CkW from Eq. ~2.19! in the strong field limit
E0@Dsk/mM , we find,

vW kW;
««0

2cs

ms

mM

a2

2h
~2 ikWCkW !3

~2 ikW3EW 0!~2 ikW•EW 0!

k2 .

~3.5!

This general result can easily be inverse Fourier transform
for the bandlike geometry. One obtains the following she
ing flow at the band interfaces:

vW 2D~X!;
««0

2cs

ms

mM

a2

2h
E0

2 cos~u!sin~u!@ ẑ3¹W cM~X!#.

~3.6!

Note in particular that this flow isparallel to the band inter-
face~Fig. 4! so that the associated convection of the defor
able bandlike aggregate is indeedstationary @i.e.,
] tCkW(t)50# as was implicitly assumed in the derivation u
ing the results of Sec. II for an undeformable macroion. T
shearing velocity depends on the sign of the tilt angleu in
accordance with qualitative experimental observation, bu
independent ofzM , the sign of the macroions’ charge
Moreover the velocity amplitude predicted~up to a few tens
mm/s! is in semiquantitative agreement with the experime
and, in practice, within the linearization conditio

uvW u!Ds /L.100 mm/s for L.a510 mm.
In addition, we note that the stationary regime cor

sponding to the maximum shearing velocity occurs for
angle of tiltu5645°. We will discuss in the following sec
tions this striking concordance with the observed tilt angle
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the aggregates in Fig. 1~with v/2p52 Hz and
ADs /v.mME0 /v.3L corresponding indeed to the dc lim
regime!.

B. The ac limit regime

Consider now a tilted band of widthL under an ac electric

field, EW 0(t)5EW 0 cos(vt). The primary electrophoretic drif
of the band is then~at leading order incMmax

/cs!,

rW0~ t !5zMmMEW 0

sin~vt !

v
. ~3.7!
d

Eq

s
ge

ed
In the ac limit regime, it is small compared to the bandwid
@i.e., mME0 /v!L/sin(u)#, and we have for large length

scalesk21@urW0u,

eikW•rW0~ t !.11 ikW•EW 0zMmM

sin~vt !

v
1••• . ~3.8!

Using this approximation in Eq.~2.15! we obtain at long
time scales,t@L2/Ds , the following periodic perturbation o
the salt profile in the region of the band:
SkW~ t !;2 ikW•EW 0zMmsCkWFDsk
2 cos~vt !1v sin~vt !

Ds
2k41v2 2 ikW•EW 0

zMmM

2 S 3Dsk
2v sin~2vt !

~Ds
2k414v2!~Ds

2k41v2!

1
~Ds

2k422v2!cos~2vt !

~Ds
2k414v2!~Ds

2k41v2!
1

1

~Ds
2k41v2!

D 1•••G . ~3.9!
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This, in turn, generates a periodic bulk charge density un

the ac fieldEW 5EW 0 cos(vt) as @Eq. ~2.21! in Fourier space#

reSkW
;

««0

2cs
~ ikW•EW 0!cos~vt !SkW~ t ! ~3.10!

and we finally get, after averagingSkW(t)cos2(vt) over a pe-
riod, an expression for the time averaged velocity. From
~3.3!, this gives at first order inmM @17# and for large length

scalesk21@ADs /v ~one has also to make use of¹W 3dEW 50W

while taking the curl of Stokes equation!

^vW kW&;2
3««0

32cs

msmM

v2

a2

2h
~2 ikWCkW !

3
~2 ikW3EW 0!~2 ikW•EW 0!3

k2 . ~3.11!

Hence,

^vW
kW
ac

&;vW
kW
dc 3

16
S mMEW 0 •kW

v
D 2

. ~3.12!

This decrease of the averaged convection velocityvW with v
explains semiquantitatively why the observation of the
electrohydrodynamic flows requires experimentally stron
electric fields if one increases the frequency@1#.

Equation~3.11! can also be inverse Fourier transform
for the bandlike geometry. One obtains the followingstation-
ary shearing flow at the band interface:

^vW 2D&~X!;
3««0

32cs

msmM

v2

a2

2h
E0

4 cos~u!sin3~u!

3~ ẑ3 x̂!¹3cM~X!. ~3.13!
er

.

e
r

As for the dc limit case, the shearing velocity is in semiqua
titative agreement with the corresponding experiments:
direction of recirculation~depending on the sign ofu! is
identical to that of the dc limit regime~see Fig. 4! and also
independent ofzM , the sign of the macroions’ charge. How
ever, we note that the maximum shearing velocity of t
band occurs now for a larger tilt angle,u5660°, for this ac
limit case in concordance with the experiment of Fig. 2~with
v/2p5100 Hz andmME0 /v.L/10!.

Interestingly, we note also that the electrohydrodynam
is much less sensitive to the boundary conditions in the
limit regime, as compared to the dc limit regime, since t
average electric momentum now behaves in Eq.~3.1! as an

octopole at large scales, i.e.,ureS
EW 0u(kW );k3 ask→0. Hence

we can study the case of an infinite polyelectrolyte solut
in the ac limit regime.

Finally we emphasize again that the shearing regimes
the bandlike aggregates we have considered in this sec
are very specific dynamical regimes since the overall~band-
like! shape of the aggregate is globally preserved under
deformation. In contrast, we expect that, for a macroion
gregate of arbitrary shape, the electrohydrodynamic flo
originating from this macroion inhomogeneity, leads also
the deformation of the global shape of the macroion-r
domain itself@i.e., ] tCk

W(t)Þ0#. This, in turn, will affect the
geometry of the electrohydrodynamic flow, so that the glo
solution will eventually undergo some complex evolutio
The study of these dynamical processes is attempted in
following section.

IV. ELECTROHYDRODYNAMIC PATTERNS

The aim of this last section is to present a unified a
proach investigating these electrohydrodynamic ‘‘instab
ties’’ for the three-charged-species model: macroio
coions, and counterions. In the next subsection, we introd
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an additional equation to the general electrohydrokinetic s
tem discussed in Secs. II and III, to describe the dynamic
the macroion density fluctuations within the electrolyte so
tion. We argue that this kinetic equation contains—in so
limit—the essential nonlinearities of the system that can
solved, at long time scales, with the quasistatic response
the small ion distributions and the electrohydrodynam
Stokes flow. We find that this three-charged-species mod
linearly stable when the effects of stochastic fluctuations
neglected. However, we then argue that the nonlinear e

trohydroconvective term (vW •¹W cM) actually dominates the
long time, large scale dynamics of the macroion distribut
when these stochastic effects are included in the descrip
of the macroion dynamics. This suggests that the elec
field-induced segregation might in fact be a noise-driven
namical process as supported by some experimental evid
~Sec. IV A!. We leave aside, however, further quantitati
discussion of this delicate noise-driven mechanism far aw
from the equilibrium homogeneous state of the dispers
Finally, we demonstrate numerically the ability of our mod
to account for the formation of quasistationary dynami
structures from a preexisting inhomogeneous macroion
tribution in a Hele-Shaw cell. These numerical results are
good agreement with corresponding experimental obse
tions ~Sec. IV B!.

A. A three-charged-species model

1. Electrokinetic equations

Let us callnM , the localmacroion concentrationin the
electrolyte. We first follow the usual approach assuming t
the dynamics of the local concentrations can be descr
neglecting the effects of stochastic fluctuations. We there
expectnM to verify at large scales,k21@1/̂ nM&1/3, the fol-
lowing dynamic equation~called the Smoluchowski equa
tion!:

] tnM1¹W •~2DM¹W nM1zMmMnMEW 1nMvW !50, ~4.1!

whereDM andzMmM are respectively the diffusion consta
and the electrophoretic mobility of the macroions. At the
scales we also havenM5cM /NM , wherecM is the concen-
tration profile of the~monovalent! charges associated wit
the macroions and,NM the number of elementary charge
per macroion. Hence the complete three-charged-spe
electrohydrodynamic system can be modeled with three c
servation equations,

] tc11¹W •~2D1¹W c11m1c1EW 1c1vW !50, ~4.2!

] tc21¹W •~2D2¹W c22m2c2EW 1c2vW !50, ~4.3!

] tnM1¹W •~2DM¹W nM1zMmMnMEW 1nMvW !50, ~4.4!

where the nonlinear electrophoretic currents couple these
namic relations to Maxwell’s electrostatic relations~in the
absence of magnetic field!,

¹W •EW 5
e

««0
~c12c21zMcM !5

re

««0
, ~4.5!
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¹W 3EW 50W , ~4.6!

whereas the nonlinear convection currents require some
ther electrohydrodynamic constitutive relation coupling t

local flow vW to the ionic concentrations and the local elect

field in the solution~note thatvW h[vW at these length scale
k21@1/̂ nM&1/3; see Sec. II!. As a crude model we assum
that this can be accounted for, at large scales, by a sim
Stokes-like equation,

hDvW 2¹W P1reS
EW 50W , ~4.7!

whereh is an effective viscosity andreS
the charge density

in the electrolyte solution surrounding the macroions as d
cussed in Sec. II~see also Appendix A and@16#!. This flow

must also verify the incompressibility condition¹W •vW 50, and
the appropriate boundary conditions at the rigid walls. T
resulting nonlinear partial differential equations~PDE! sys-
tem @Eqs.~4.2!, ~4.3!, ~4.4!, ~4.5!, ~4.6!, and~4.8!# is clearly
not tractable analytically in the general case and approxi
tions are necessary to allow further progress.

2. Approximation scheme

Let us first consider the large scale electrohydrodynam
within a Hele-Shaw cell of thickness 2a (k21@a), which
we introduced above. In this quasi-2D confined geometry

get, introducing the vector potentialAW 5A(x,y) ẑ perpendicu-

lar to the confining plates@with vW 2D(x,y)5¹W 3AW #,

2
2h

a2 DAW 1¹W reS
3EW 050W , ~4.8!

where we have used Maxwell’s equation~4.6! and

¹W •AW 50.
Although the simplified nonlinear general system@Eqs.

~4.2!, ~4.3!, ~4.4!, ~4.5!, and ~4.8!# is still not tractable ana-
lytically we can further progress as we are interested her
particular situations with~large! macroions diffusing much
more slowly than the~small! coions and counterions. Typi
cally, this corresponds toDM.Ds/1000.10212 m2/s for
macroions in the micrometer range, whereas the elec
phoretic mobilities~m2 , m1 , andmM! have usually similar
numerical values at high ionic strength. Hence the relat
weight of the stabilizing diffusive term is much less impo
tant in the macroion dynamical equation than in the cor
sponding equations for the small ions. This means that
nonlinearities of the electrophoretic and convective curre
are potentially much more destabilizing for the macroio
@Eq. ~4.4!# than for the small ions@Eqs.~4.2! and~4.3!#. We
therefore expect that, at some intermediate electric field,
essential nonlinearities of the system lie in the macro
Smoluchowski equation~4.4! whereas the conservatio
equations for the small ions can be linearized as discusse
Sec. II @Eqs.~2.6! and ~2.7!#. Namely,

] tS2DsDS2msEW 0 •¹WR50, ~4.9!

] tR2DsDR2msEW 0 •¹W S2ms2cs¹W •dW E50, ~4.10!
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] tnM1zMmMEW 0 •¹W nM1¹W •~2DM¹W nM1zMmMnMdEW

1nMvW !50, ~4.11!

where we again assumed,D15D25Ds ~with Ds@DM! and
m15m25ms5Dse/kT for simplicity @13#. As previously
we defineS5dc11dc2 andR5dc22dc1 .

Hence the nonlinear dynamic equation for the macroi

@Eq. ~4.11!# is now coupled~via dEW andvW ! to a linear PDE
system@Eqs. ~4.5!, ~4.8!, ~4.9!, and ~4.10!#. Although the
global system remains insoluble analytically, we can s
progress with further approximations as we will now discu
Consider some large scale spontaneous fluctuation of
macroion distribution with typical wave vectork (k21@a).
Under strong electric field we expect—from the discuss
of Sec. II—that the primary electrophoretic motion of th
macroion density fluctuation generates some large scale
turbations of the salt concentration. If we further assume
the dynamical evolution of this macroion density fluctuati
is much slower~in the electrophoretic moving frame! than
the response of the salt distribution~i.e., if significant evolu-
tions of the macroion distribution occur at long time sca
t@1/Dsk

2! we can then estimate the electric field perturb

tion dEW and the electrohydrodynamic convectionvW using the
results of Secs. II and III where we assumed a uniform e
trophoretic transportation of some undeformable macro

profile: cM(rW,t)[cM„rW2rW0(t)….

Using Eq.~2.20! and, e.g., Eq.~3.6! to estimatedEW andvW ,
respectively, one can then check that this assumption
‘‘quasistatic’’ salt perturbation~in the moving frame! is usu-
ally well verified in practical situations~that is, DMk, v,
mMdE!Dsk!. Hence, the long time dynamics of the macr
ion distribution can be estimated, in the moving fram

(dt[] t1zMmMEW 0 •¹W ), by the following nonlinear dynamic
equation:

dtnM2DMDnM1zMmM¹W •~nMdEW !1vW •¹W nM50,
~4.12!

wheredEW (nM) andvW (nM) are evaluated, as in Secs. II an
III, by solving the remaining linear PDE system@Eqs.~4.5!,
~4.8!, ~4.9!, and ~4.10!# with the assumption that, under

strong electric fieldEW 0 , the short time scale dynamics ofnM
is a uniform electrophoretic migration, i.e.,dtnM

5] tnM1zMmMEW 0 •¹W nM.0, as for the case of an undeform
able macroion~Sec. II!.

From Secs. II and III we have the following in Fourie
space~with nkW5CkW /NM!.

~i! In the dc limit case, i.e.,k21!Dsk/v,mME0 /v,

vW
kW
dc

;NM

««0

2cs

ms

mM

a2

2h
~2 ikWnkW !3

~2 ikW3EW 0!~2 ikW•EW 0!

k2 ,

~4.13!

dEW
kW
dc

;2NMS ms

mM
2

mM

ms
D 2 ikW•EW 0

k2

2 ikWnkW

2cs
. ~4.14!

~ii ! In the ac limit case, i.e.,k21@max(mME0 /v,ADs /v),
s

ll
.

he

n

er-
at

s
-

c-
n

of

^vW
kW
ac

&;2NM

3««0

32cs

msmM

v2

a2

2h
~2 ikWnkW !

3
~2 ikW3EW 0!~2 ikW•EW 0!3

k2 , ~4.15!

^dEW
kW
ac

&;NM

zMkT

e2cs
ikWnkW . ~4.16!

3. Linear stability

Let us first consider some small spontaneous fluctuat
dnM , around the uniform macroion concentration,nM

0 . From
Eq. ~4.12! we find thatdnM follows at first order the follow-

ing dynamical equation@sincedEW (nM
0 )50W andvW (nM

0 )50W #:

dtdnM2DMDdnM1zMmMnM
0 ¹W •dEW 50, ~4.17!

which becomes in the dc limit regime@using Eq.~4.14!#

Fdt1zMS ms2
mM

2

ms
D NMnM

0

2cs
EW 0 •¹W GdnM2DMDdnM50

~4.18!

and in the ac limit regime@using Eq.~4.16!#,

dtdnM2S DM1
NMnM

0

2cs

mMkT

e DDdnM50. ~4.19!

This shows thatnM does not exhibit any ‘‘classical’’ in-
stability in the small ions’ ‘‘quasi-static’’ response approx
mation since no exponential amplification of sma
modulations—around the perfectly uniform distributio
nM

0 —is predicted from Eqs.~4.18! and ~4.19!. In fact, one
can show by a straightforward but tedious calculation@18#
that the general system, Eqs.~4.2!, ~4.3!, ~4.4!, and~4.5!, is
itself linearly stable. We will, however, argue in the follow
ing subsection that the actual three-charged-species sy
might nonetheless be ‘‘unstable’’ once we take into acco
the so far neglected effects of stochastic fluctuations on
macroion dynamics.

4. Noise-driven pattern formation

The formation of interesting noise-driven patterns has
ready been shown to arise from nonlinear stochastic P
with no deterministic destabilizing term. The idea originat
with the seminal paper of Kardar, Parisi, and Zhang@19#
who proposed that interfaces growing under noisy ballis
deposition of particles undergo somekinetic rougheningfol-
lowing universal dynamic scaling lawsdue to the large scale
dominance of a nonlinear term in the stochastic equa
describing the deposition process~see also@20#!.

In the general case, the ‘‘stability’’ of the large scale b
havior of the linearized stochastic equation against the in
sion of nonlinear terms can be probed by the simple te
nique referred to aspower countingintroduced in the contex
of the renormalization group theory. Nonlinear terms who
importance at long time and large scales vanishes under
caling are said to beirrelevant for the long time, large length
scale dynamics of the system and can usually be omitted
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the other hand, nonlinear terms ‘‘growing’’ under dynam
rescaling cannot be generally neglected~in contradiction
with the classical analysis of linear stability! since they
modify the long time, large scale dynamical behavior of t
system.

A more quantitative analysis involving dynamical reno
malization calculations@19,21# relies, however, on the as
sumption that the stochastic properties of the~leading! noise
term are invariant under rescaling. This condition can c
ceivably be fulfilled when the noise source isexternalto the
otherwise deterministic system as in the case of a grow
interface under random deposition of particles@19#. This is
to be contrasted with the case of systems exhibitinginternal
noise @22# that typically originates from the fact that the
consist of discrete thermally agitated particles, as for
three-charged-species system in which we are intereste
this paper. Indeed the effect of such internal noise on n
linear systems leads to delicate conceptual questions@23#
and we expect in particular that internal noise sources cha
their stochastic properties under dynamical rescaling. Stil
a qualitative level, we can identify the potential relevance
the inclusion of nonlinear terms against the presence o
~internal! noise source with specific stochastic properties

The primary internal noise we are interested in to test
relevance of the nonlinear terms in our three-charged-spe
system is clearly the thermal noise responsible for the th
modynamic fluctuations at equilibrium. For simplicity, w
will limit our discussion to the~realistic! asymptotic regime
where the effects of stochastic fluctuations and nonlin
terms are restricted to the dynamic equation of the slow
fusing macroions~with ‘‘quasistatic’’ responses of the sma
ions, as previously discussed!. Following van Vliet’s ap-
proach to density fluctuations in diffusive systems@24# we
therefore add to the deterministic linearized equations~4.18!

and~4.19! the ~thermal! noise sourcef (rW,t) with the follow-
ing first two moments:

^ f ~rW,t !&50, ~4.20!

^ f ~rW,t ! f ~rW,t8!&;22DMnM
0 ¹2dd~rW2rW8!d~ t2t8!,

~4.21!

or in Fourier space

^ f ~kW ,t ! f ~kW8,t8!&;2DMnM
0 k2dd~kW1kW8!d~ t2t8!,

~4.22!

whered is the spatial dimension. This leads in particular
the expected thermodynamic density fluctuations for
‘‘ideal gas’’ of macroions~since all interactions have bee
neglected!,

^dnM
2 &1/2

nM
0 ;

1

AnM
0 V

, ~4.23!

whereV is the volume of the observed subsystem.
The study of the relevance of the nonlinear ter

¹W •(dnMdEW ) andvW •¹W dnM added to the linearized stochast
equation for the macroion density fluctuations is perform
in Appendix B. As we have mentioned in Sec. III, the ‘‘a
gregation’’ between individual macroions should already
e

-

g

e
in

n-

ge
at
f
n

e
ies
r-

r
f-

n

s

d

-

cur at smaller length scales than the distancea between the
confining surfaces of the Hele-Shaw cell. Below this hyd
dynamic screening length, we estimate the behavior of
electrohydrodynamic flow by changing 2/a2 into k2 in the
Stokes equation~that is, assuming a perfectly infinite syste
without hydrodynamic boundary conditions!.

For the spatial dimension of interest here,d53, we find

~see Appendix B! that the non-linear term¹W •(dnMdEW ) is
always irrelevant whereas the electrohydroconvective ter

vW •¹W dnM is relevantin the unscreeneddc limit regime~i.e.,
k21,a and k21!Dsk/v,mME0 /v! but irrelevant in all
the other regimes~i.e., screened dc limit, screened and u
screened ac limit regimes!. This result demonstrates that th
diffusive stabilizing term2DMDdnM is not sufficient to en-
sure the stability of an initially homogeneous macroion d
tribution in the presence of both stochastic fluctuations a
electrohydroconvection@25#. This suggests that the nonlinea
convective term may actually have a crucial role in the d
namical processes within the macroion dispersion~as sup-
ported by simple estimations of orders of magnitude in
situations corresponding to the experimental conditions;
Appendix C!. In general, we therefore expect that this ele
troconvective term might generate some large scales
namic patterns from the spontaneous thermal fluctuation
the macroion dispersion.

On the qualitative level this dynamical segregation p
cess would be able to account for the following importa
experimental observations@27#:

~1! Under dc or low frequency ac electric field condition
the solution undergoes somecoarse grainingprocess gener-
ating denser macroion regions until the size of the globu
segregated regions typically reaches the spacing lengtha be-
tween the confining walls, that is, the hydrodynamic scre
ing length. The fast coarse graining process then stop
apparent agreement with theirrelevance of the nonlinear
convective term at larger scalesk21>a, as we cross from a
3D unscreened hydrodynamic regime to a screened one~in a
Hele-Shaw cell or capillaries@1#!.

~2! At higher frequency, when the periodic drift of th
macroions is smaller than the typical hydrodynamic scre
ing lengtha enforced by the experiment geometry, we o
served that the coarse graining process may stop in the
rection of the electric field before it reaches the sizea, as is
clearly visible in the observations on DNA solutions in ca
illaries showing disk-shape aggregates thinner than the
illary diameter a @1#. In the dynamic scaling picture thi
would correspond to the crossover of the nonlinear conv
tive term from itsrelevant~dc limit! behavior at short length
scales~i.e., for k21,Dsk/v,mME0 /v,a! to its irrelevant
~ac limit! behavior at larger scales~i.e., for k21.mME0 /v!.

~3! Finally the comparison between thisrelevantnonlin-

ear termvW •¹W nM in the unscreened dc limit and the diffusiv
stabilizing term2DM¹2nM is expected to give some orde
of magnitude of the experimental electric field threshold
this electric-field-induced ‘‘segregation’’ to occur. Takin
k21.^nM&21/3 andDM.kT/(hRg), we find

ET.A kTcs

««0RgNM^nM&1/3 ~4.24!
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for a dilute solution of macroions. Numerically,ET is a few
tens of V/cm for a 30mg/ml l-DNA solution in good agree-
ment with the experimental onset of aggregation. Note a
thatET decreases with the macroion size (Rg), charge (NM),
and concentration (nM) in qualitative agreement with th
experimental observations@1#.

More quantitative progress requires, however, the use
more sophisticated techniques such as the dynamic renor
ization group theory and we do not address further the
gregation problem here@28#.

B. Numerics

Although we have seen in the last subsection that
~4.12! does not account for the primary segregation proce
we still expect it to give us some understanding of the la
scale evolution of a preexisting macroion-rich segregated
gion under strong electric field. We have therefore solv
Eq. ~4.12! numerically, in the Hele-Shaw approximation, f
some initially segregated domains of simple shape. The
culations are performed in Fourier space with an extens
use of the fast Fourier transform algorithm@29#.

Figure 5 shows the time evolution in the ac limit regim
of an initially 2D Gaussian distribution of macroions@i.e.,

Eqs. ~4.15! and ~4.16! have been used to evaluatevW kW(nM)

anddEW kW(nM) respectively#. The known experimental value
of the various physical parameters have been used in
calculation and the electric field frequency and amplitu
have been chosen to correspond typically to the experime
ac limit regime, namely,E05500 V/cm andv/2p5100 Hz.
Within a tenth of second the initial Gaussian distribution
symmetrically elongated perpendicularly to the direction
the ~horizontal! electric field. This is due to the convectiv
electrohydrodynamic flow, which is shown to dominate t

FIG. 5. Numerical evolution of an initially Gaussian macroio
distribution induced by the application of a strong~horizontal! elec-
tric field in the analytic ac limit regime. Spatial periodic bounda
conditions are used. Time scales~when the known values of the
experimental parameters are used!: ~A! t50 s; ~B! t50.1 s; ~C!
t51.5 s; ~D! t53 s ~quasistationary regime!. ‘‘ 3’’ indicates that
the local probability density is at least one-tenth of the maximum
the initial distribution.
o

of
al-
g-
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e
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e

he
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f

macroion fluctuation dynamics in this regime~see Appendix
C!. After about 1 s, the symmetry of the deformation is spo
taneously broken and a quasistationary dynamical regim
reached, exhibiting elongated aggregates tilted with resp
to the direction of the electric field. Finally, after a few mo
seconds, the diffusion slowly wins over the long time sc
dynamics as expected in the Hele-Shaw approximation~see
previous section! and the tilted aggregates progressively d
appear. Remarkably, we note that the quasistationary reg
corresponds to a660° tilt angle of the elongated dynamica
aggregates with respect to the field, which we identified
Sec. III as the stationary regime corresponding to themaxi-
mum shearing of the bandlike aggregates. This suggests tha
these quasistationary dynamical structures are actually
erated and sustained by anabrasionmechanism at the aggre
gate interface that tends to ‘‘facet’’ the macroion-rich r
gions at the angle corresponding to the most effici
abrasion process, that is,u5660° in the ac limit regime.
Such a mechanism is indeed expected to dynamically wh
down or gradually cover the interfacial regions of the agg
gate that are not oriented along the direction of fastest e
trohydrodynamic convection at the interface, thus eventu
faceting the whole aggregate along these directions of m
efficient abrasion process.

The system dimensions, combined with the perio
boundary conditions we have used in the numerical calc
tions, tend to fix the zigzag pattern periodicity for systems
medium sizes, as shown in Fig. 5, however, we checke
performing ~less accurate! calculations in bigger systems—
that these chevron-like patterns can appear even before
deformation of the macroion-rich region reaches the sys
‘‘edges’’ ~data not shown!.

This numerical solution of the large scale evolution of
initially Gaussian macroion-rich region is clearly in goo
agreement with the corresponding experiment depicted
Fig. 6. In this experiment, a DNA aggregate, previous
formed under strong electric field, has been left to diffuse
about 1 minute after the electric field was turned off.
strong electric field is then reapplied on the disk-li
macroion-rich region~E05500 V/cm andv/2p5100 Hz!,
which deforms first perpendicularly to the~horizontal! elec-
tric field. However, this symmetric elongation is unable
lead to any stationary dynamical regime and the aggreg
eventually breaks, after about 1 s~by spontaneous fluctua
tion!, to form a stable quasistationary zigzag pattern wh
the continuously sheared long aggregates have indee
660° angle of tilt with respect to the field as for the case
Fig. 2 corresponding also to the ac limit regime~but starting
initially from a dispersion at equilibrium, i.e., with thermo
dynamic fluctuations!.

Figure ~7! is the numerical quasistationary dynamic
structure formed, in the dc limit regime, from an initiall
Gaussian macroion distribution. The645° angle of tilt be-
tween the continuously sheared long aggregates and the
tric field also clearly demonstrates good agreement with F
1, depicting the experimental observations in the dc lim
conditions.

V. CONCLUSION

We have developed in this paper the basis of a theore
approach to describe thelarge scale, long timeelectrohydro-

f
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kinetic phenomena occurring, under strong electric field, i
dispersion of macroions in a simple electrolyte of high ion
strength.

The main ideas and approximations of this approach
be summarized as follows.

~i! The macroions’ charges are described, at large len

scales, by a smooth concentration profile,cM(rW,t), depend-
ing a priori on the space and time coordinates, and the s
scale electrokinetic phenomena are taken into account
nomenologically by the introduction of an electrophore
mobility mM for the macroions.

~ii ! The difficulties of the coupled nonlinear electrokine
equations are overcome by considering that the macro
merely generate small perturbations on the already out
equilibrium situation of the simple electrolyte (c15c25cs)

under a strong electric field,EW 0 . We then use the supposed

FIG. 6. Experimental evolution of an initially quasi-isotopel-
DNA-rich region ~about 10mm in diameter! under the sudden ap
plication of a strong ac electric field in the horizontal direction: fie
amplitude 500 V/cm and frequency 100 Hz.~A! t50 s; ~B!
t50.5 s; ~C! t51.5 s; ~D! t>3 s ~quasistationary regime!.

FIG. 7. Numerical quasistationary structure, obtained from
evolution of an initially Gaussian macroion distribution~as in Fig.
5!, induced by the application of a strong~horizontal! electric field
in the analytic dc limit regime. Spatial periodic boundary conditio
are used. ‘‘3’’ indicates that the local probability density is at lea
one-tenth of the maximum of the initial distribution.
a

n

th

rt
e-

ns
f-

small parametercM /cs ~electrolyte of high ionic strength! to
expand the nonlinearities in the coupled equations.

~iii ! As the macroions diffuse usually much more slow
than the small ions of the electrolyte~i.e., DM!Ds!, the
coion and counterion concentrations respond quasistatic
to the slow dynamics of the macroion density fluctuatio
described in the reference frame moving at the elec
phoretic velocity of the macroions.

~iv! This leads, in particular, to some large length sc
perturbations of the local salt concentrationS in the disper-
sion ~i.e., electrodialysis effect!, which we have evaluated
analytically in two limit regimes. dc limit re-
gime: L!Ds /(Lv),mME0 /v; ac limit regime:
L@max(mME0 /v,ADs /v), where L is the typical spatial
modulation of the macroion fluctuation along the direction
the applied electric field.

~v! Under electric field, this salt perturbation profile
also ‘‘polarized,’’ leading to the violation of strict electro
neutrality over large length scales in the electroly

reS
52««0EW 0 •¹W S/2cs ~Sec. II!.
~vi! The electrical body force arising from the couplin

between this large scale charge density and the applied e

tric field @i.e., reS
EW 0 at first order incM /cs# is then able to

trigger some electrohydrodynamic flows in the solutio
which can be described in the experimental regimes of in
est by a simple Stokes equation in the moving refere

frame,hDvW 2¹W P1reS
EW 050W . In particular,vW has been de-

termined analytically in the Hele-Shaw approximation for
quasi-2D confined geometry~Sec. III!.

~vii ! The resulting quasistatic electrohydrodynamic flowvW

and the local correction to the applied electric field,dEW , are
then used to evaluate the slow dynamics of the macro
fluctuations self-consistently@Eq. ~4.12! in Sec. IV#.

We have numerically solved the self-consistent nonlin
dynamical equation for the macroion fluctuations@Eq.
~4.12!# in the Hele-Shaw approximation. This demonstra
the ability of our theoretical model to account for thedy-
namic selection processby which an initially disk-shaped
aggregate acquires its eventual quasistationary zigzag s
ture with tilt angles of660° in the ac limit regime and
645° in the dc limit regime. In addition, we predict, no
only the correct sign of recirculation in the tilted aggrega
~similar in both regimes and independent ofzM , the sign of
the macroions’ charges!, but also the correct orders of mag
nitude for the time scales and recirculation velocities, wh
experimental values of the various parameters are used.

This good agreement with the experimental observati
in both ac and dc limit regimes strongly suggests that
large scale dynamic selection process at work in these v
ous colloidal or polyelectrolyte solutions under strong ele
tric field is indeed related to the nonlinear coupling betwe
the macroion density fluctuations and the associated elec
hydrodynamic flows, as discussed in Sec. IV. Moreover,
have suggested that the same nonlinear coupling might
be responsible—through a noise-driven dynamical proces
for the primary segregation mechanism itself, as it is sho
to dominate the large scale, long time stochastic dynamic
a 3D environment~Appendix B!.

Although some important aspects of these segregation

e
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56 5701ELECTROHYDRODYNAMIC PATTERNS IN MACROION . . .
patterning processes remain to be more thoroughly inve
gated@30#, we believe to have already gained some phys
insight into these electrohydrodynamic phenomena. This
have to be further tested through more quantitative exp
mental studies@31,32#. If confirmed, this understandin
should allow improvements of the capillary electrophore
separation technique. More generally, we expect that
large scale perturbations of ionic distributions in colloidal
polyelectrolyte solutions under electric field should have i
portant consequences in other related problems such a
behavior of electrorheological fluids or the interpretation
dielectric constant measurements in colloidal dispersi
@12#.
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APPENDIX A: ELECTROHYDRODYNAMIC FLOW AND
OUT-OF-EQUILIBRIUM CHARGE DENSITY

The main contribution to the large scale electrohydro
namic flow in the macroion dispersion is further discussed
this appendix.

We assume for the sake of simplicity that the prima
electrophoretic migration, associated with the counter
equilibrium distribution, doesnot generate any flow in the
solution on length scales larger than the Debye lengthk21,
as for the case of a‘‘free-draining’’ electrophoretic migra-
tion @11#. This assumption implies that the large scale el
trohydrodynamic flow is related to the out-of-equilibriu
charge density. As the salt perturbation profile@Eq. ~2.19!#
becomes S;2(ms /mM)cM in the strong field limit
E0@Dsk/mM , we find, from Eq.~2.20!, that thedynamic
charge density arising from the electrophoreticmigration of

the macroions@i.e., 2««0(mM /ms)EW 0 •¹W cM/2cs# and the
charge density associated with the electric polarization of

salt perturbation profile~i.e., 2««0EW 0 •¹W S/2cs! are of simi-
lar orders of magnitude~mM and ms usually having similar
numerical values!. We expect, however, that the magnitud
of the electrohydrodynamic flow originating from each
these two charge density sources are, in fact, very differ
This can been shown by integrating the Stokes equation o
over the typical extension length of the flow gradient gen
ated by each of these charge density sources@i.e.,

u¹vW u'(E0 /h)*redr'#.
~1! The dynamic charge density originating from the ma

roions electrophoretic migration generates, in practice, sh
ing over the Debye length scalek21, because of the spatia
proximity of the boundary conditions on the actual macro
surface. Its contribution,vM , to the large scale electrohydro
dynamic flow can therefore be estimated as
ti-
l

ill
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vM

k21 '««0

E0

h
U E mM

ms

EW 0 •¹W cM

2cs
dr'U

'««0

E0

h

mM

ms

E0

2cs
cMmax

.

~2! The polarization of the salt perturbation profileS gen-
erates, on the other hand, shearing over the micrometer r
scale, which is the typical extension of the salt perturbat
in the vicinity of the migrating macroions, i.e
Ds /(mME0).123 mm in Eq. ~2.19!. Hence, the contribu-
tion vS of the salt profile polarization to the large scale ele
trohydrodynamic flow can be similarly estimated as

vS
Ds /~mME0!

'««0

E0

h
U E EW 0•¹W S

2cs
dr'U'««0

E0

h

E0

2cs
uSmaxu.

So using uSmaxu'(ms/mM)cMmax
, from Eq. ~2.19! in the

strong field limit E0@Dsk/mM , we finally get @with
Ds /mM5(ms /mM)kT/e#

vM'S mM

ms
D 3 eE0k21

kT
vS .

Hence we havevM!vS in most practical situations, sugges
ing that the contribution to the large scale convection,
rectly associated with the macroion electrophoretic mig
tion, is generally negligible as compared to the contribut
associated with the polarization of the salt perturbation p
file far beyond the Debye layers, i.e.,v'vS . At large length
scales,k21@k21, we can therefore simplify the Stoke
equation as

hDvW 2¹W P1reS
EW 050W ,

with

reS
52««0EW 0 •¹W S/2cs .

APPENDIX B: RELEVANCE OF NONLINEAR TERMS

We study in this appendix the relevance of the nonlin
terms for the slow dynamics of the macroion density fluctu
tions starting from the nonlinear dynamical equation~4.12!

with the additional~conservative! thermal noisef (rW,t) intro-
duced and discussed in Sec. IV A,

dtdnM2DMDdnM1zMmMnM
0 ¹W •dEW 1zMmM¹W •~dnMdEW !

1vW •¹W dnM1 f ~rW,t !50, ~B1!

with ^ f (rW,t) f (rW8,t8)&}¹2dd(rW2rW8)d(t2t8), whered is the
spatial dimension. Investigating for possible dynamic scal
behaviors of Eq.~B1! ~ask→0 andt→`!, we assume tha

the change of length scale,rW→brW, is accompanied by the
following changes of time scale,t→bzt, and macroion den-
sity fluctuationdnM→bxdnM , wherez is the dynamic ex-
ponent that describes the scaling of relaxation times w
length, andx is the analog of the ‘‘roughening exponent’’ fo
a growing interface@19#.



l

to

lle

nd
rm

nc
or

nin

ric

ing

ing

ar

-

-

-

re
be

at
bil-

to
g
g

nts
the

5702 56H. ISAMBERT, A. AJDARI, J-L. VIOVY, AND J. PROST
We then get the dynamic scaling behaviors ofdEW andvW in
Eq. ~B1! using Eqs.~4.14! and ~4.16! and Eqs.~4.13! and
~4.15!, respectively. We recall that the~electrohydro!convec-
tion given by Eqs.~4.13! and~4.15! is valid only beyond the
hydrodynamic screening lengtha in the Hele-Shaw~HS! ap-
proximation~i.e.,k21.a!. For the sake of generality we wil
also study the scaling behavior of this term withno hydro-
dynamic screening~NS!. One can show that this amounts
simply changing 2/a2 into k2 in Eqs. ~4.13! and ~4.15!. In
practice this regime will correspond to length scales sma
than the hydrodynamic screening length, i.e.,k21,a. We
find the following

~i! In the dc limit regime@from Eqs.~4.13! and ~4.14!#,

dEk
dc}nk hence dEdc→bxnM ,

vHSk

dc }knk hence vHS
dc→bx21nM ,

vNSk

dc }k21nk hence vNS
dc→bx11nM .

~ii ! In the ac limit regime@from Eqs.~4.15! and ~4.16!#,

dEk
ac}knk hence dEac→bx21nM ,

vHSk

ac }k3nk hence vHS
ac→bx23nM ,

vNSk

ac }knk hence vNS
ac→bx21nM .

Assuming that the noise keeps its uncorrelated features u
rescaling~as expected at least as long as the nonlinear te
do not dominate! implies the following change of scale forf :

f→b212 d/2 2 z/2f .

After this rescaling Eq.~B1! transforms to the following:
~i! In the dc limit regime@using Eq.~4.18!#,

bx2zDtdnM2bx22DMDdnM1b2x21zMmM¹W •~dnMdEW !

1bx211avW •¹W dnM1b212 d/2 2 z/2f ~rW,t !50,

that is,

DtdnM2bz22DMDdnM1bz211xzMmM¹W •~dnMdEW !

1bz211avW •¹W dnM1b212 d/2 1 z/2 2x f ~rW,t !50,

~B2!

whereDt[@dt1zM(ms2$mM
2 /ms%)(NMnM

0 /2cs)EW 0 •¹W # cor-
responds to the time derivative in the system of refere
that moves at uniform velocity, taking into account the c

rections in electric field, zMmMEW 0@11($ms /mM%
2$mM /ms%)(NMnM

0 /2cs)] @see Eq.~4.18!#, with aHS
dc 5x21

in the Hele-Shaw approximation andaNS
dc 5x11 on length

scales shorter than the electrohydrodynamic scree
length.

~ii ! In the ac limit regime@using Eq.~4.19!#
r

er
s

e
-

g

bx2zdtdnM2bx22DM8 DdnM1b2x22zMmM¹W •~dnMdEW !

1bx211avW •¹W dnM1b212 d/2 2 z/2f ~rW,t !50,

that is,

dtdnM2bz22DM8 DdnM1bz221xzMmM¹W •~dnMdEW !

1bz211avW •¹W dnM1b212 d/2 1 z/2 2x f ~rW,t !50,

~B3!

where DM8 5DM(11$NMnM
0 /2cs%$mMkT/eDM%) is an ef-

fective diffusion constant taking into account the elect
field perturbation effects@see Eq.~4.19!#. With aHS

ac 5x23
in the Hele-Shaw approximation andaNS

ac 5x21 on length
scales shorter than the electrohydrodynamic screen
length.

In the absence of the nonlinear terms, Eqs.~B2! and~B3!
are made scale invariant, as expected, upon the follow
choices for the dynamic scaling exponents,

z5z052,

x5x05212
d

2
1

z0

2
52

d

2
.

We then obtain the ‘‘scaling dimension’’ of the nonline

terms,zMmM¹W •(dnMdEW ) andvW •¹W dnM , added to this scale
invariant equation, as follows:

~i! In the dc limit regime,

z0211x05~22d!/2 for zMmM¹W •~dnMdEW !

z0211a0
dc511a0

dc for vW •¹W dnM ,

with a0 HS
dc 5x02152(d12)/2 in the Hele-Shaw approxi

mation and a0 NS
dc 5x0115(22d)/2 on length scales

shorter than the electrohydrodynamic screening length.
~ii ! In the ac limit regime,

z0221x052d/2 for zMmM¹W •~dnMdEW !,

z0211a0
ac511a0

ac for vW •¹W dnM ,

with a0 HS
ac 5x02352(d16)/2 in the Hele-Shaw approxi

mation and a0 NS
ac 5x02152(d12)/2 on length scales

shorter than the electrohydrodynamic screening length.
If the scaling dimensions of both nonlinear terms a

negative, the nonlinearities scale to zero and are said to
irrelevant, so that the solution should remain uniform
large length and time scales as predicted by the linear sta
ity study. @In principle, such situations might also lead
strong coupling regimes for~coupling! parameters exceedin
a finite threshold@19,20#.# On the other hand, if the scalin
dimension of at least one of the nonlinear terms ispositive,
this term grows under rescaling and isrelevantfor the long
time, large scale dynamics. Nontrivial dynamic expone
are expected in this case but their estimation through
dynamic renormalization technique is involved@28#.
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One finally finds for the relevance of the nonlinear ter
@25#:

~i! In the dc limit regime, the electrophoretic ter

zMmM¹W •(dnMdEW ) is relevant for d<2 @i.e., (22d)/2>0#

and the convective termvW •¹W dnM is irrelevantat any dimen-
sion in the Hele-Shaw approximation~i.e., for k21.a since
2d/2,0) andrelevantat d<4 @i.e., (42d)/2>0# on length
scales shorter than the hydrodynamic screening length,
k21,a. In particular, in thed53 case, which we are inter
ested in here, we predict that the electrohydrodynamic c
vective term dominates the long time scale dynamics in
dc limit regime on length scales shorter than the electro
drodynamic screening length.

~ii ! In the ac limit regime, we predict, however, that bo
nonlinear terms are irrelevant at any dimension or len
scales, i.e.,k21.a in the Hele-Shaw approximation an
k21,a for length scales shorter than the electrohydro
namic screening length.

APPENDIX C: ORDER OF MAGNITUDE
OF THE NONLINEAR TERMS

We show in this appendix that the nonlinear electrohyd

dynamic convective term, vW •¹W dnM , dominates the
macroion density fluctuation dynamics~in the moving refer-
ence frame! in the conditions of experimental observatio
with DNA solutions.

In the ac limit regime, we find that this term dominat
l-
,

v.

m

e

er

n
at
b
n

s

e.,

n-
e
-

h

-

-

when the following double inequality holds@we compare,
e.g., Eqs.~4.15! and ~4.16! and the diffusive term,DMk,
with the ac limit constraint,k21@mME0 /v#,

1!
v2

mM
2 E0

2 k22!
3

32

ms

mM

««0E0
2a2

h
minS cMmax

2csDM
,

e

kTmM
D .

This typically holds fork21.a.10 mm, and an electric
field of 300 V/cm and 100 Hz in agreement with th
experimental conditions for l-DNA solutions
(mM.331028 m2 V21 s21, ms.1027 m2 V21 s21, DM
.10212 m2 s21, cMmax

/2cs.1022, h.1023 Pa s, and

««0.1029 F m21!.
In the dc limit regime, i.e.,k21!Dsk/v,mME0 /v, we

find similarly that the electrohydrodynamic convective te
dominates the dynamics when the following two inequalit
hold @we compare, e.g., Eqs.~4.13! and~4.14! and the diffu-
sive term,DMk#,

k21!««0E0

a2

2h

ms
2

mM~ms
22mM

2 !
,

DM!
ms

mM

««0E0
2a2

h

cMmax

4cs
.

This also typically holds in the experimental conditions w
the l-DNA solutions.
idal

te-
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