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Electrohydrodynamic patterns in macroion dispersions under a strong electric field
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Recent reports have shown that initially homogeneous solutions of charged colloidal particles or polyelec-
trolytes may develop instabilities under strong electric field. In particular, striking dynamical structures form-
ing quasi-stationary zigzag patterns have been observed, under strong ac electric field, when these macroion
dispersions are confined into a slab cell. We develop in this paper the basis of a theoretical approach aimed at
describing the large scale, long time electrokinetic phenomena occurring, under strong electric field, within a
dispersion of macroions in a simple electrolyte of high ionic strength. We assume that the macroions’ charges
can be described, at large length scales, by a smooth charge profile that merely generates some small pertur-
bations on the already out-of-equilibrium situation of a simple electrolyte under strong electric field. This
allows us to overcome the complexity of the nonlinear electrokinetic equations by expanding them around the
far-from-equilibrium system with no macroion. This approach is therefore to be contrasted with the classical
theory for which the perturbations of the ionic concentrations are evaluated as linear responses to a “weak”
applied electric field with respect to their equilibrium distributions around a macroion at rest. We show here
that the out-of-equilibrium ionic distributions in the solution are perturbed over large length scales in the
vicinity of the macroions, which leads to the breakdown(eduilibrium) electroneutrality in the solution far
beyond the Debye length scales. The electrical body force arising from the coupling between this large scale
charge density and the applied electric field eventually triggers some electrohydrodynamic flows which, in
turn, convect the very slowly diffusing macroions in the solution. Numerical resolutions of the model in two
analytical limit regimes show that this process is able to select quasistationary dynamical patterns from
preexisting inhomogeneous distributions of macroions, in good agreement with experimental observations. In
addition, we show, using simple dynamical scaling arguments, that this nonlinear coupling between the mac-
roion density fluctuations and the associated electrohydrodynamic flows dominates the large scale, long time
stochastic dynamics of the macroion distribution, suggesting that it might also be responsible, through a
noise-driven process, for the primary segregation it$€l£063-651X97)13710-2

PACS numbg(s): 82.70.Dd, 47.54tr, 82.45+2, 83.80.Gv

[. INTRODUCTION zigzag patterns form in the confined DNA solution as de-
picted in Figs. 1 and 2. Interestingly, very similar patterns
The motivation for this work originated from striking ob- have also been observed by other groups with quite different
servations done by Mitnik and co-workdik 2] while study-  charged colloidal systems such as polystyrene splibites
ing DNA capillary electrophoresis. In principle, the use of even China clay6]. This demonstrates that the underlying
microcapillaries, filled with a neutral polymer solution as physics is a very general phenomenon, i.e., independent of
sieving medium, allows one to apply strong electric fieldsthe microscopic nature of the colloidal particles or the poly-
and, thus, achieve fast electrophoretic separdiBnHow-  electrolytes.
ever, Mitnik et al. discovered that solutions of monodisperse  We present in this paper our interpretation of the physical
large DNA fragments become inhomogeneous once subwrigin of the pattern formation in these macroion dispersions
jected to an electric field stronger than a few tens of V/cmunder strong electric field. Some of the general ideas found-
This electric-field-induced DNA segregation, occurring evening this analysis have already been outlifdd In the re-
in the presence of neutral polymer chains used as sievinmainder of the Introduction we first recall the main experi-
medium, leads to “artificial” peaks on electrophoregramsmental features of the observed electric-field-induced
when one attempts to separate DNA fragments longer than pgatterning of DNA solutions confined in a quasi-two-
few kilobase pairs. The phenomenon is therefore, to date, dimensional2D) geometry. We then briefly review and dis-
major limitation to this otherwise very promising technique cuss the classical theoretical approach to electrophoresis of
for molecular genetics. The experimental observations bemacroions in electrolyte solutions of high ionic strength, be-
come even more puzzling when the DNA solution is con-fore outlining the general ideas of the theoretical approach
fined not in a capillary but between two glass plates, with arwe propose in this paper.
ac electric field applied parallel to the platgxs4]. Striking Typical experiments are performed in a slab cell filled
with 30 ug/ml of A-DNA labeled with a fluorescent dye
(separation between the parallel glass plateg=sl0 um).
*Present address: Center for Studies in Physics and Biology, Th€he N\-DNA is a 16 um long DNA fragmen{48.5 kilobase
Rockefeller University, Box 25, 1230 York Ave., New York, NY (kbp)] taking a coil configurationRy=1 um) in the buffer
10021-6399. Electronic address: isambert@eds2.rockefeller.edu solution used. Each\-DNA molecule is known to carry
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FIG. 1. Top view of the horizontal slab cell containing 89/ml FIG. 3. Sketch of a field-induced quasistationary dynamical ag-
of A-phage DNA(Appligene, llikirch, B in 1X TBE buffer (89 mv gregate containing typically huqdreds qf macroions. The direction
Tris-boric acid, 2.5 ™ EDTA), containing 10uM ethidium bro- of circulation(arrows changes with the sign of the tilt angte The
mide for fluorescence visualization. A thickness ofIDum is circulation velocity increases rapidly with increasing field, and can
imposed by dispersing in the solution a few latex spheres of diamt€ach 100um/s close to the aggregate boundary.

eter 10um (P°|yS.CienceS’ Eppelheinm,)DThe negative image foqnres of these dynamical structures are the electric field
(covering 300um) is taken 2 min after the onset of a 300 V/cm ac

field, in the horizontal direction, at the frequency 2 Hz. The angle of, threshold” above which they are seen to develop within

tilt between the direction of the electric field and the elongatedtyplcaLIIy less than 1 mif1,2] and the precise value of their

aggregates ig~ + 45° [2]. angle of tilt with respect to the direction of the electric field

[4]. The field threshold decreases when the frequency is low-
ered or when the DNA molecular weight and, hence, the size
roughl)‘/‘ 50 OPO elementary charged that correspond to @ ot the coil are increasefil,2]. As for the tilt angle, one

mean “fixed" charge concentration of about 10mol/l in  jpeanyes essentially two distinct values in the quasistationary

the coil region, 100 times smaller than th_e ionic strength Ofdynamical regime developing over a few minutes after the
the buffer used(see[1] for further experimental details et of the instability [4]. At low frequency (i.e.,

0.01% of hydroxypropyl cellulos¢HPC), which adsorbs ;5. 10 1) the periodic electrophoretic drift of the tilted
strongly on the glass surfaces, is also added to suppreggreqate is typically larger than its width, and we measure
electro-osmosis. The ac field is then applied parallel to thesgzi45o (see Fig. 1 withw/2m=2 Hz). At higher fre-

9'353 surfaces ar_1d the_ labeled molecule_s are observed }ﬁency, the periodic drift of the tilted aggregate is smaller
epifluorescence videomicroscopy perpendicularly to the sla an its width, and we havé=+60° (see Fig. 2 with
cell. For strong ac fielqstypically a few hundred Vicm at wl27=100 Hz),. Although tilted aggregates are often orga-
100 I:!z) the .S(_egrer?atléan dgl\:;SD:\llS: fto eIonga;ted "aggre'nized into zigzag patterns, this is not an essential feature of
gate§ .(conta|r.ung nundrecs ot- ragme.nts ocallyin e instability since isolated tilted aggregates are also ob-
semld_llut_e reglm)atllt_ed with regard to the direction of the served. Hopefully, these remarkable features should allow us
e'?c”'c field. Qn a time scale of tens of secon(_:is to a fev‘fo discriminate between different possible mechanisms for
minutes, theséilted aggregates are actually quasistationary the physical origin of the phenomenon

dyn?mlcal_strLIJ(i[tureSN;_thln which individual E.NA:;'T‘I_EI' The description of electrophoresis of charged colloidal
ecules recirculate continuous(gee arrows on Fig.) € particles, i.e., their migration under electric field, has been a

circulation ve_Iocity increases rapidly with the amplitude_z of theoretical challenge for most of this century originating
the electric field and can reach 1@0n/s. The other main back in 1903 with the famous Smoluchowski expression giv-
ing the electrophoretic mobility, under weak electric field, of
a charged sphere placed in a strong electrolyte of high ionic
strength(i.e., k 1</ wherex ! is the Debye length and

the sphere diametgl8]. This states that the electric force on
the particle essentially balances the viscous shear induced,
within the Debye layer, by the excess counterions migrating
under the electric field. Hence electrophoretic mobilities es-
sentially reflect the basic electrokinetic phenomena at the
Debye length scale.

Due to the complexity of the nonlinear electrokinetic
equations, the electrophoretic mobility of a macroion is usu-
ally evaluated analytically assuming that the equilibrium dis-
tributions of the coions and counterions remaiperturbed
under electric fieldn the frame of reference of the migrating

FIG. 2. Similar experiment as in Fig. 1 with a 300 V/cm ac field, macroion  Electrophoresis being, however, an out-of-
in the horizontal direction, at the frequency 100 Hz. The angle ofequilibrium(dissipativé phenomenon, the equilibrium distri-
tilt between the direction of the electric field and the elongatedbutions of the electrolyte ions not only “follow” the migrat-
aggregates is now=+60° [2]. ing macroion but they are also perturbed in its vicinity under
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the application of an electric field. ponential amplification of small perturbations around a per-
The perturbation of the ionic distributionsithin the De-  fectly uniform macroion distributionwe argue that the dy-
bye layers has been classically analyzed in linear theoriedamics of the macroion density fluctuations is actually
taking the applied electric field as a small parameter as conhighly sensitive, at long time and large length scales, to the
pared to the equilibrium electric fieldithin the Debye layers Presence of thermal noise. This suggests that the observed
[9] It has been proposds,G] that the resu'ting po|arizati0n electric-field-induced Segl’egation m|ght in fact COI’I’eSpond to
of the excess counterions in the Debye layers induces dipolé Noise-driven instability as supported by some experimental
dipole interactionsbetween the macroions, hence favoring €vidence. We finally show, using numerical calculations, that
macroscopic segregation of the dispersion foermody- the large scale elgct_rohydrodynamm flowg originating in the
namic reasond 10]. We believe, however, that this mecha- Presence of preexisting mhomogeneous dlstrlbut_lons_ of mac-
nism alone is not sufficient to explain tdgnamicalfeatures ~ roions are able talynamicallyselect some quasistationary
of the long recirculating tilted aggregates observed experiPatterns in good agreement with those observed experimen-
mentally [4]. We donot invoke any further(dipole-dipole tally. This is the strongest result supporting our approach.
interactions in this paper, concentrating instead ondje
namical processes originating from the perturbations of thell. ELECTRONEUTRALITY BREAKDOWN BEYOND THE
ionic distributionsfar beyondthe Debye layers, that is at DEBYE LAYER

length scales much larger than %, the Debye length of the i i ) )
g g 4 g Let us first consider a singlendeformablemacroion

electrolyte. i . :
Classically, these small amplitude but large scale pertur\_Nlthln a strong electrolyte solution. Being concerned here

bations of the ionic distributions beyond the Debye layers ardith the electrokinetic phenomena beyond the Debye layer
thought to be negligible in the limit of vanishing applied W& assume that the macroion charges can be described, at

71> 71 . _
electric field (i.e., E,—0) since they appear to be of the 'arge length scalek *>« "%, by a smooth continuous con

orderO(E2) as compared to the leading perturbations of thecentration profilecy(r,t). However, we also assume that
order O(E,) [9]. In fact this “weak electric field” result is the essential electrokinetic phenomena within the Debye
contingent upon the priori assumption that the equilibrium layer of the actual macroion are satisfactorily taken into ac-
state(i.e., Eo=0) corresponds to the limit of the actual dy- count by a phenomenological electrophoretic mobility; ,
namical problem at vanishing applied electric figlide.,  relating the average electric fieldaat the meicroion scale,
E,—0). However, this limit may generally be singular, as (E)M, to its electrophoretic velocity = zyun(E)w (con-
we will show, and the validity of a straightforward expansion ventionally we take unsigned electrophoretic mobilities with
is questionable. zy= *1 being the sign of the macroion’ chargek addi-
The plan of our discussion is the following: In Sec. Il we tion, we assume for simplicity that this primary electro-
discuss the electroneutrality breakdown beyond the Debyphoretic motion is perfectly “free-draining,” that is, with no
layer. We start by showing that the ionic concentrations argonvective flow in the solution at larger scales than the De-
perturbed over large distancéise., wave vectork<«) in e jength, i.e.p =0 in the fixed frame of reference at length
the vicinity of a single undeformable macroion under elec-g;jaq 1 1 [11].
trophoretic migration. In the dc regime, we find in particular o aim is now to evaluate the first convective correction
that these perturbations correspond to a quasistationary sglf yhis primary free-draining electrophoretic motion associ-
depletion—in the vicinity of the moving macroion—which is a4aq with the ‘occurrence of electrohydrodynamic flows due
globally independenbf the amplitude of the applied electric 1o large scale breakdown of local electroneutrality in the
field. We then argue that these out-of-equilibrium dynamical g tion surrounding the macroion. We will argue in this

effects—better known in the context of electrodialysis with getign that this violation of electroneutrality at large length

fixed charged membranes—lead to the breakdow(eqlli-  gpjes je k1> k1, is related to the dynamical perturba-

librium) electroneutrality beyond the Debye length scales._ tion of the local salt concentration in the vicinity of the mac-

In Sec. I”.We dlscyss large scale e!ectrohydrodyngmlc‘roion under electrophoretic migration through the electrolyte
flows in quasi-2D confined geometry. This large scale viola-,

. . . . solution.
tion of strict electroneutrality eventually triggers, under elec-

tric field, some electrohydrodynamic flows within the colloi-

dal dispersion that we first study in the large length scale
“Hele-Shaw” approximation for a quasi-2D geometry. We  The uniform transportation of the concentration profile,
propose in this section that the two angles of tilt of the elon-. (F,t), describing the distribution of charges of thade-
gated aggregates observed experimentally in this geomet"f}gﬁmablemacroion can be written as

(i.e., 45° and 60° at respectively low and high frequency

correspond in fact to two distinct dynamical limit regimes S TN Ve —

that can be described analytically. dCmt(vetvn)-Veu=0, @

In Sec. IV we discuss the electrohydrodynamic patterning - - . ,
process. The general problem of the three-charged-speci®dereve=2zuun(E)y is the macroion electrophoretic ve-
system “macroion, coion, and counterion” is discussed withlocity defined above and,, is the (weak electrohydrody-
an emphasis on the separation of time scales between the fagtmic convection of the solution, at the scale of the macro-
dynamics of the small ions and the slow dynamics of thdon, that we would eventually like to evaluate.
macroion density fluctuations. Although we find that this The uniform electrophoretic drift of the macroion then
model does not exhibit “classical” instabilitieg.e., no ex-  generates some out-of-equilibrium local perturbations of the

A. Electrokinetic equations
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small coion and counterion concentrations since Poisson'which ensures that the out-of-equilibrium perturbations
equation(2.4) couples their conservation equations to thegominate the equilibrium distributionsE®9 5¢® and ¢,
concentration profile of the macroion charges,(r,t). hence simplifying the discussion for the far-from-
Namely, equilibrium regime. This condition typically holds for
. . . . Eo>100 Vicm with /=1um and cy__/c~0.01 corre-
9C++V-(=D Ve +pu,ciE+c,v)=0, (22  sponding to the experimental conditions reported for the ob-
. . . . servations or\-DNA solutions[1,4,12.
ohc_+V-(=D_Vc_—u_c_E+c_v)=0, (2.3 Then linearizing and combining equatio(&?2) and (2.3
to form the quantitiesS=4c, +46c_ and R=é8c_—éc, ,

- . e i i i -
V.E= —(c,—c_+2zyCy)= Pe 2.4 gnd neglgctmg thg convective term tﬁrar.\dR (i.e., assum
€89 g€0 ing that|v|<Dg//=1000 um/s) we obtain
wherec+(F,t), c,(F,t), D,,D_,andu,, u_ are respec- HS— DSAS—Mséo -€R:0, (2.6)
tively the local concentrations, diffusion constants and abso-
lute values of the electrophoretic mobilities of the small IR — DSAR_IU’SEO -€S—M52c5§-5§=0 2.7

monovalent ionse is the elementary chargeg, the dielec-
tric constant of the solution, angk(r,t) is the local charge Where we have assumed thab,=D_=Ds and

density. Finally,v is the local convection in the solution “+:'L\L/V‘="r‘57n?sre/kt-r£; S'\T‘?“C't% [1t?1]'r e devi

surrounding the macroiofwhich we distinguish in this sec- . S We are interested in evaluating trarge scalgdevia-

i - ) . tions from electroneutrality, it is convenient to combine Egs.

tion fromvy,, the convectiorat the scale of the macroion (2 g) and (2.7 with Poisson’s equation,
As this nonlinear system is also coupled—via-to some |, _(7,,c\y—R)=£¢,V - SE, which gives

hydrodynamic equation—e.g., a Stokes-like equation—the

general problem is a difficult task that can only be tackled - - Pe

within some approximation scheme. hS=DAS=psEo - V| Zmen— o/ 2.8

B. Approximation scheme 21 9:Cy— ZuD A Cy — fsEq - VS

As we already discussed in the Introduction, the classical 1
perturbative approach to handle such an electrokinetic sys- = —(Dek2pe— DA pet dipe) 2.9
tem is to make an expansion around the equilibrium gtade €

field applied with respect to the amplitude of an applied . :
electric field, supposedly small compared to the equilibriumWhere we have introduced the expression for the Debye

) . o F ” H -1__
electric field within the Debye layef8]. However, since we €ngth in the electrolytex = JeeokT/2eCs.

are interested here in the electrohydrodynamic phenomena Although the coupled linear system can be exactly solved,
beyond the Debye layers—where the equilibrium electricV€ Will gain more physical insight into the experimental situ-
field vanishes—we cannot resort to this classical “low elec-ations of interest with some further approximations. At large

-1 -1 H 2
tric field” approximation to overcome the complexity of the €ngth scalesk™">«"", and long time scaled> 1/D¢«*,

coupled nonlinear electrokinetic equations. we can evaluate the charge density from Eq.(2.9) as
The alternative scheme we propose is to start from the e

far—frpm—equilibrium reg'ime' corresponding to the electrolyte Pe:W(ZM dCy—ZuDsACy _Mséo .65)_ (2.10

solution with no macroion(i.e., ¢, =c_=cg) under some sK

(strong finite electric fieldE,. We then make an expansion  Using this result in Eq(2.8) we then obtain, at these
around this uniform electrokinetic regime—writing |ength and time scaleg.e., k1>« ! andt>1/D¢«?),
E=Eq+ dE, c,=cs+ 6C, , etc.—with respect to the sup- 1
posedly small perturbations due to the macroion presence eBok
that we model, at large scales, by a smooth concentration kT

profle  of  monovalent charges, cM(F,t)—With (2.13

|Vem|max~cwm, /' where/ is the macroion typical size, whereE, is taken parallel to thg-axis.

/>k~*. This approach requires in particulas, _<c, In most practical situations we haveEgx™ Y/kT<1,
which corresponds to a solution of high ionic strength. Morewhich  corresponds to a maximum electric field,
precisely one can shovsee below that the ratioc,\,|maxlcS Eomax=kT/(eK*1), generally much higher than any attainable
can be taken as the small parameter to linearize the consegxperimental situation without turbulent heat convection or
vation equations (2.2 and (2.3 (i.e., bubbles formatior(e.g., EomaX=2>< 10° V/cm for T=300 K
OE/Eg~dC, [cs~dc_/cs~cy _ Ics<1) when the applied andx~1=10"° m). Hence, Eq(2.11), describing the pertur-
electric fieldE, verifies the following condition: bation of the local salt concentration, can generally be fur-
ther simplified to

&tS_ DS AS+ :ZM/’LSEO 'VQCM

2
2
g

eEy/
T =1, (2.5

(9tS_DSAS:ZM/.LSé0'€CM . (212
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These additional approximations actually amount to par

tially decoupling the linear syste(2.8) and(2.9), which can , ) : -

now be solved in two successive steps: we first evaluate thet linear order incy, _/cs, only thf Ieadlngeterm oby

local perturbation of the salt concentration with E8.12  should be kept in Eq(2.17), that is,v =2z uwEo-

[i.e., assuming electroneutrality in E.8)] and the first For a dc field, the differential equatid@.17) is then trac-

correction to electroneutrality is then obtained, at large,pe and gives, with the initial conditior&;(t=0)=89
length and time scales, by substituting the result§anto ' ’

Eq. (2.10.

Where50=?0(t) is the velocity of the migrating macroion.

z E, -ikCg - -
S(t)y=— —MESZ0 TR (g (D zumEo ikt

DSk2+ ZM/"LMEO . ||Z

C. Perturbation of the salt concentration

It is instructive to note that the perturbation in salt con- o
centration due to the macroion presence is easily solved in +Sge_(Dsk2+ZM“MEO‘ik)t_ (2.18
the particular case of a 1D distribution diked charges,

CJV'(y)’ perpendicularly to the direction of the electric field At long time scalest>1/DK?, the transported Fourier

Ey. If we also assuméor simplicity) a symmetric distribu- componentSi(t) therefore becomes quasistationary,
tion around the origin, with a typical width, we find a local

quasi-stationary regime at long time scales_?/Dg, in the

region of the distributior(i.e., |y|<L), Zu w<Eq - ik
g 1 |Y| ) Si=— MMsEQ " e 2.19
ZMeEO y , , Dsk2+ZM/.LMEo'ik
S(y.t)=—? OcM(y yay’, (2.13

Fort>/?/Dy, this implies that the electrophoretic migration

which corresponds to an antisymmetric profile with a netf the macroion generates, in its vicinity, a quasistationary
depletion of small ions on one side of the fixed distribution@"d @symmetric perturbation of the salt concentration. In par-
and an excess of salt on the other side. Then these concelicular, we note thaSg= — (us/unm) S cydr<0 corresponds
tration perturbations progressively extend by diffusion be-to a global(out-of-equilibrium depletion in saltn the region
yond the region of the fixed distribution, i.e., over the rangeof the macroionMore precisely this requires taking the limit
L<|y|<\D. This well known phenomenon, called elec- t—= first and therk—0 sincet>1/D k? is assumed in Eq.
trodialysis, is in fact widely used to deionize electrolyte so-(2.19. In fact the total amount of salt is naturally conserved
lutions by applying an electric current acrg§iged) charged in the system[i.e., ;S5(t) =0], however, the salt excess
membranes. coming from the quasistationary depletion in the region of
We now turn to the case of a uniformly transported mac-the moving macroion leads eventually to a vanishing in-
roion, CM(F,I)ECM(F— Fo(t)), Wherefo(t) is the origin of ~ Crease in salt concentration in the rest of the sqlutlon since
i R - - ) this is spread over a diverging volume at long time scales.
the moving frame, i.efo(t)=ve+uvp in Eq.(2.1). Itis then  one can get further physical insight into this salt depletion
convenient to take the Fourier transform of E8.12 de-  once realizing that it merely compensates for tloeal) con-
fined asSg(t)=[ffS(r,t)e* "dr, noticing that the Fourier tribution of the moving macroion to the uniform total electric
components  of the  macroion profile, Ci(t)  current as is immediately seen in the formal casg= wuy
=fffcM(F— Fo(t))eik'FdF, can be written as a}nd D=0 (thgn Slz —cCy)- Finally, note _that thls_qugssta—
tionary depletion in salt concentration in the vicinity of a
) ) A macroion in electrophoretic migratiog, is independent of
é,;(t)=eik'F0<‘>f j j cu(rHek " dr =ek oy, the applied electric fieldClearly, this type of singular dy-
namical behavior cannot be obtained within the classical
(2.1 theory of electrophoresis since the perturbatiginem the
equilibrium statg are thenconstructedo be proportional to

whereCy is independent of time for an undeformable migrat-the applied electric field, [15]

ing macroion. Hence, Eq2.12 becomes in Fourier space,

ﬁte§;2+ DSKZ:S];= _ZMMséo ) iIZClzeik'ro(t). (2.15 D. Out-of-equilibrium deviations from electroneutrality
Once the salt profile has been determined, we then have
We can similarly define the “transported” Fourier com- the first correction to large scale electroneutrality from Eq.

ponents of S—in the reference frame of the moving (2.10 anddCy=—2zZyum EO -ﬁcM [that is, Eq.(2.]) at first

macroion—as order incy _/cd,
max
Si(t)y=e R 05 D), (2.16 R pum Eo-Vew  zukT
pe=¢€egV-0E=¢gg PRI T Acy
which allows us to express E(R.15 as .
EO M VS
A 2 = e - (22@
S+ iK-voSi+ DK?Si=—ZymsEq - ikCg, (2.1 2Cs
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The first term in the right-hand side of E®.20, depend-  lll. LARGE SCALE ELECTROHYDRODYNAMIC FLOWS

ing explicitly oncy,, is thedynamiccharge density arising in IN QUASI-2D CONFINED GEOMETRY

close vicinity to themigrating macroion(i.e., with uy # 0)

due to the time delay of the local electric relaxation where,
. - t

the macroionpasses througlthe electrolyte electric relax-

ation time: 1D¢«? in Eq. (2.10].

As already hinted at in the previous section, we expect
hat the breakdown ofequilibrium) electroneutrality in the
solution surrounding the macroions generates, under strong
. - electric field(to be estimated in the Sec. J\Velectrohydro-
onIhe issetiloen: terro?i%fa'tzquﬁi\?'edggﬁgi(tjme?t 2'5&5;:51';?;33/ dynamic flows within the macroion dispersion. These flows

m o 1S the app 9 y q are satisfactorily described by a Stokes-like equation at suf-
is for Eo=0) due to the macroion presence. ficiently low frequency of the electric field and in the regime

The strong electric field conditio®Ey//kT=1, ensures for which the vorticity diffuses faster than the electrophoretic
that the dynamic charges dominate the equilibrium chargegotion over the typical width,, of the macroion aggregates
at large scale =/ In addition, Eq.(2.19 suggests that [16]. This corresponds to/L?>w and v/L%> uyE,l/L,
the first and the third terms in E(2.20 have the same order \here y=5/p=~10"° m?/s is the dynamical viscosity ang
of magnitude(as uy andus have usually similar numerical the mass density of the dispersion. For solutiona-&fNA,
values, which allows us to check, with Eq2.20), the con- e find that this regime corresponds éo<v/L2~10* Hz
sistency of the linearization conditions SE/Ey  and Eg<v/(uyL)=3%10* V/icm, which clearly holds ex-

~S/cs~cMmaX/cs<l announced earlier. perimentally[1,4].
However, the net bulk charge corresponding to the third Hence, in this limit, we have the following relation be-
term, L.e., tween the(first ordey local electric forcep, Eq and the local
veIocityJ in the electrolyte solution surrounding the macro-
éo VS ions (see Appendix A
Pes= 8805 (229 L
s nAv—VP+pe Eo=0, (3.
typically extends over micrometers into the solution sur- with pes=—ssoéo~§S/2cs, (3.2

rounding the moving macroieathat is, k!
~Ds/umEo=1-3 um in Eq. (2.19. It is related to the where 7 is the solvent viscosity an® the pressure in the
variation of electric conductivity in the vicinity of the mac- gq|ytion.» also has to satisfy the incompressibility condition
roion due to the perturbation of the salt concentratiirone %.0-0. and the bound ditiome=0 h .
can visualize this large scale charge dengity by stating U an the boundary conditions=0, at the macroion

. . . . . “surfaces” and at the recipient wallg@hat is in the labora-
that the small cation and anion concentration profiles, which

add up to give the total salt profile, become shifted in oppo0TY frame if no electro-osmosis occiwrghe flow v turns
ite directi deE- by a tiny distances’ i out to depend crucially on these boundary conditions for the
Site directions undek, by a tiny distance>” scaiing as dc regime that we have investigated until now, since the

electric force behaves as a dipolelike term at large scales in
ceoEy €Egk L this electrostatic analog equatifh¥], i.e., |pe5é0|(k)~k as
8= e2c, T KT K h (222 ko [from the Fourier transform of Eq2.21) and Egq.

(2.19 at large scalek™ *>D/uyEo]. In particular we ex-
pect that experiments under different confined geometries

Although &' is typically a picometric length, the associated Will develop, in general, different dynamical structures.

polarization of the salt profile is enough to enforce a quasi- N this section we limit our study to the quasi-2D confined

uniform electric currenﬁ=(2c +S)(I§o+5§) in the solu- geometry corresponding to the experimental conditions de-
S [}

tion surrounding the macroion as Eq2.20 becomes scribed in the Introduction. In such a geometry one usually
9 ' makes the well-known Hele-Shaw approximation, which

V-J=0 wherecy,=0. We will further argue in the following  greatly simplifies the boundary condition problem on the two
section that this .apparen_tly weak ylolat|on of local eIectr o'com‘ining plates. It states that #f VP + p, E, is essentially
neutrality over micrometric scales, in the electrolyte solution ) S )
surrounding the macroion, is also sufficient to lead to susindependent o, the coordinate perpendicular to the confin-
tained electrohydrodynamic flows within the solution. ing plates, then the Stokes equation simplifies to the follow-
Finally we want to stress that the smooth macroion profildnd 2D form at scales larger thara2the separation distance

approximation we made is merely a handy toy model foroetween the plates:

which the applied electric fiel, dominates at all scales in 27 - . . .

the polyelectrolyte solution. A more physical model should - — v2D(x,y)—VZDP+(peSEO)2D=O, (3.3
explicitly take into account the usually much higher electric a

field within the Debye layer. We expect, however, that the - . ) ) .
electrokinetic phenomena beyond the Debye layer—wher&herévzp is in fact the maximum velocity of a Poiseuille
the electric field vanishes at equilibrium—should still corre-profile between the plates(x,y,z) =(1—z%/a?v,p(X,y).
spond semiquantitatively to the physics we describe with this Since the Hele-Shaw approximation holds for length
simple model. scales larger than& we cannot consider individual macro-
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Numerically, we find in factD¢/L2=uyEy/L=10 Hz,
which suggests that these regimes define, in practice, a
simple partition of the frequency spectrum in apparent con-
cordance with the low frequencyw(27<10 Hz) and high
frequency @/27>10 Hz) experimental regimes recalled in
the Introduction[4]. We retain, however, in the following
discussion, the less specific denomination of “dc and ac
limit regimes.” Indeed we will argue in Sec. IV that these
regimes also describe, at a given frequency, the physics at
short length scalds 1< D k/w< uyEq/w, and large length
scalesk ™ 1> max(uyEq/w,\Ds/w), respectively.

A. The dc limit regime

FIG. 4. Infinite band tilted with respect to the direction of the ac ~ Let us first consider the dc limit regime and apply the
electric fieldéo. The electrohydrodynamic shearing at theooth results, valid for a constant electric field, that we derived in

interfaces of the deformable band is drawn schematically. Sec. Il. We assume for simplicity that the aggregate is com-

pletely deformable at scales much larger than the size of the
ions anymore, assuming instead that macroion “aggregatesi”diVidual macroions, so that the convective electrohydrody-
(or macroion density fluctuationssomewhat larger thanez ~ hamics obeys Stol«las equatih3) in the Hele-Shaw cell at
exist within the Hele-Shaw cell. At these scaless then the  12rge scales, i.ek™">a. Taking the curl of Eq(3.3 and
effective viscosity of the dispersion, which we assume to bentroducing the stream functiorA (v,p=V XA with
independent of the macroion local concentration in a crudef. A=0 whereA=A%), one finally gets in the transported
approach(i.e., leading order ircy _ /cs). We postpone fur-  Fourier space:

ther discussion of the primary segregation process—from in- . .
dividual macroions to aggregates—to the next section. - a? (—ik)X(—ikXEg)
For the sake of simplicity we will further assume in this UEZZ_ K2 Pegy - (3.9
. o n
section that the formed aggregates are quasi-infinite bands
tilted with regard to the direction of the electric field in ob- . _ =R
vious reference to the experimental observations. Let us thene" using Pegg—(880/2§s)(lk‘Eo)5k. _ é.m(.j
assume that a quasi-infinite tilted bandlike aggregate ofk™ ~(#s/um)Cy from Eq.(2.19 in the strong field limit
width L has formed in the Hele-Shaw cell. One can define &0> Dsk/un . we find,
system of referencY with the Y axis parallel to the band

and we callg the angle of tilt of the band with regards to the - €&0 Hs a—z(—'EC*)x(_ikX Eo)(—ik-Eo)
direction of the electric field|¢|<90°) (see Fig. 4. k" 2cs uy 2 Mok k? '
We model this band as a whole by a smooth concentration (3.5

profile of monovalent chargesy, (X,t), independent ofy

and we use the fact that the primary electrokinetic phenomThis general result can easily be inverse Fourier transformed
enon under electric field is still a uniform migration of the for the bandlike geometry. One obtains the following shear-
band with electrophoretic mobilityy,, as for the case of a ing flow at the band interfaces:

single macroior(see full discussion in the next sectjorl- )

though the general electrokinetic problem is usually complex  ~ ., £20 ﬁa_Ez : 55 Ve (X

when an ac electric field is applied, we will now see that the v2p(X) 2cs uy 27 ° cog O)sin(B)[2X Vew(X)].
situation is actually tractable in the two following limit re- (3.6
gimes: . . : , ,

If the electric field frequency is smaller than the relax- Note in particular that this flow iparallel to the band inter-
ation frequency of the salt perturbation, i.es<Ds/L2, we face(Fig. 4) so that the associated convection of the deform-
expect that the theoretical approach developed for a macr@Ple bandlike aggregate is indeedtationary [i.e.,
ion in the dc regime should also hold for the bandlike aggre:Ck(t)=0] as was implicitly assumed in the derivation us-
gate itself. In particular, fopyEq sin(@)/L=Ds/L%=w, the NG the results of Sec. Il for an undeformable macroion. The
periodic drift of the band is larger than the bandwidide., ~ Shearing velocity depends on the sign of the tilt angle
umEo/w=L/sin(f)] and a quasi-dc salt depletion deve|op5accordance with qualitative experimental observation, but is
in the vicinity of the moving band. In practice this dc limit independent ofzy, the sign of the macroions’ charges.
regime will apply for bandlike aggregates under low fre- Moreover the velocity amplitude predictédp to a few tens
quency ac field. pm/s) is in semiquantitative agreement with the experiments

If the periodic drift of the band is smaller than its width @nd, in practice, within the linearization —condition
[i.e., umEo/w=<L/sin(d)] the associated perturbations of |v|<Dg/L=100 um/s forL=a=10 um.
cu(X,t) are expected to be small. This will allow us to de- In addition, we note that the stationary regime corre-
velop a perturbative approach for this ac limit regime corre-sponding to the maximum shearing velocity occurs for the
sponding to bandlike aggregates under high frequency aangle of tilt 6= +=45°. We will discuss in the following sec-
electric fields. tions this striking concordance with the observed tilt angle of
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the aggregates in Fig. 1(with w/2m7=2Hz and
VDgs/w=unEq/w=3L corresponding indeed to the dc limit
regime.

B. The ac limit regime

Consider now a tilted band of width under an ac electric

field, éo(t)zéo cost). The primary electrophoretic drift
of the band is thertat leading order ircy _ /c),

- - Sin(wt)
ro(t)=zuumEo

3.7

ELECTROHYDRODYNAMIC PATTERNS IN MACROION . ..

Dk? cog wt) + w sin(wt) B Zy MM
_I .

5695

In the ac limit regime, it is small compared to the bandwidth
[i.e., umEq/w<<L/sin(f)], and we have for large length

scalesk 1>|ry|,

e [T sin( wt)
elk.ro(t):1+|k' Eon/.LM

+-e (3.8

Using this approximation in Eg2.15 we obtain at long
time scalest>L2/Dy, the following periodic perturbation of
the salt profile in the region of the band:

3DK%w sin(2wt)

Si(t)~—iK- EqzyusCi DT o2
S

(D2k*—2w?)cog 2wt) 1

2 | (DX**+40?)(D%kK*+ w?)

+ +
(D2k*+4w?)(D2k*+ w?)

(DiK*+ w?)

+}

(3.9

This, in turn, generates a periodic bulk charge density undefs for the dc limit case, the shearing velocity is in semiquan-

the ac fieldE = Eo cos(t) as[Eq. (2.21) in Fourier spack
€€ .- -
pes™ 5, (K- EgJcosdwt)Si(t) (310

and we finally get, after averagingk(t)cos(wt) over a pe-

riod, an expression for the time averaged velocity. From Eq

(3.3), this gives at first order ip), [17] and for large length

scalek 1> \/D;/w (one has also to make use bk SE=0
while taking the curl of Stokes equatipn

3eeg Uspm @°

<v|2>~_ 3205 (1)2 ﬂ(_”(CQ)
(—ikXEg)(—ik-Eg)3
X 2 . (3.11
Hence,
3 [ uyEo K\’
> >d MmEQ -
<UEC>~UEC1—6 T) . (3.12)

This decrease of the averaged convection veIQ;:it;yith )

titative agreement with the corresponding experiments: the
direction of recirculation(depending on the sign of) is
identical to that of the dc limit regimésee Fig. 4 and also
independent of, , the sign of the macroions’ charge. How-
ever, we note that the maximum shearing velocity of the
band occurs now for a larger tilt anglés= = 60°, for this ac
limit case in concordance with the experiment of Figwh
w/277=100 Hz anduyEy/w=L/10).

Interestingly, we note also that the electrohydrodynamics
is much less sensitive to the boundary conditions in the ac
limit regime, as compared to the dc limit regime, since the
average electric momentum now behaves in Bgl) as an

octopole at large scales, i.%géo|(ﬁ)~k3 ask—0. Hence

we can study the case of an infinite polyelectrolyte solution
in the ac limit regime.

Finally we emphasize again that the shearing regimes of
the bandlike aggregates we have considered in this section
are very specific dynamical regimes since the ovetahd-
like) shape of the aggregate is globally preserved under the
deformation. In contrast, we expect that, for a macroion ag-
gregate of arbitrary shape, the electrohydrodynamic flow,
originating from this macroion inhomogeneity, leads also to
the deformation of the global shape of the macroion-rich
domain itselffi.e., 3,C(t) #0]. This, in turn, will affect the
geometry of the electrohydrodynamic flow, so that the global

explains semiquantitatively why the observation of theseg|ytion ‘will eventually undergo some complex evolution.
electrohydrodynamic flows requires experimentally strongefrhe study of these dynamical processes is attempted in the
electric fields if one increases the frequendy. following section.

Equation(3.11) can also be inverse Fourier transformed
for the bandlike geometry. One obtains the followstgtion-
ary shearing flow at the band interface: IV. ELECTROHYDRODYNAMIC PATTERNS

The aim of this last section is to present a unified ap-
proach investigating these electrohydrodynamic “instabili-
ties” for the three-charged-species model: macroions,
coions, and counterions. In the next subsection, we introduce

3eeg psuy A° .
3% % ﬂEé cog 6)sin’( )
S

<520>(X)~

X (zXX)V3cp(X).

(3.13
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an additional equation to the general electrohydrokinetic sys- VXE=0 (4.6)
tem discussed in Secs. Il and Ill, to describe the dynamics of ' '

the macroion density fluctuations within the electrolyte soluyhereas the nonlinear convection currents require some fur-

tion. We argue that this kinetic equation contains—in somener electrohydrodynamic constitutive relation coupling the
limit—the essential nonlinearities of the system that can b

solved, at long time scales, with the quasistatic responses - -
the small ion distributions and the electrohydrodynamicfield in the solution(note thatv,=v at these length scales
Stokes flow. We find that this three-charged-species model & '>1vy)">; see Sec. )l As a crude model we assume
linearly stable when the effects of stochastic fluctuations aréhat this can be accounted for, at large scales, by a simple
neglected. However, we then argue that the nonlinear elecStokes-like equation,

trohydroconvective termu(-Vcy,) actually dominates the - = - o

long time, large scale dynamics of the macroion distribution 7Av—VP+pe E=0, (4.7)
when these stochastic effects are included in the description

of the macroion dynamics. This suggests that the electricwhere 7 is an effective viscosity ande_the charge density
field-induced segregation might in fact be a noise-driven dyin the electrolyte solution surrounding the macroions as dis-
namical process as supported by some experimental evidencassed in Sec. l{see also Appendix A andL6]). This flow
(Sec. IVA). We leave aside, however, further quantitative m st aiso verify the incompressibility conditiah v =0, and
discussion Of.t.hIS- delicate noise-driven mechanlsm_ far aWayhe appropriate boundary conditions at the rigid walls. The
from the equilibrium homogeneous state of the dispersionyegting nonlinear partial differential equatiofRDE) sys-
Finally, we demonstrate numerically the ability of our mOdeltem[Eqs.(4.2), (4.3), (4.4), (4.5), (4.6), and(4.8)] is clearly

to account for the formation of quasistationary dynamical,qt (ractable analytically in the general case and approxima-
structures from a preexisting inhomogeneous macroion dijons are necessary to allow further progress.

tribution in a Hele-Shaw cell. These numerical results are in
good agreement with corresponding experimental observa- 2. Approximation scheme
tions (Sec. IV B.

i(?cal rowJ to the ionic concentrations and the local electric

Let us first consider the large scale electrohydrodynamics
within a Hele-Shaw cell of thicknessa2(k~!>a), which
we introduced above. In this quasi-2D confined geometry we
1. Electrokinetic equations get, introducing the vector potential= A(x,y)z perpendicu-
Let us callvy, the localmacroion concentratiorin the  lar to the confining platepwith JzD(x,y)zﬁxA],
electrolyte. We first follow the usual approach assuming that
the dynamics of the local concentrations can be described /B - =
neglecting the effects of stochastic fluctuations. We therefore — 2 AA+Vpe XE=0, (4.9
expectvy to verify at large scales™ 1> 1/ vy )3, the fol-
lowing dynamic equatior{called the Smoluchowski equa- where we have used Maxwell's equatiot®.6) and
tion): V.A=0.
- - - - Although the simplified nonlinear general systg¢fgs.
dym+ V- (=DuVem+zupumvmE+vmv)=0, (41 (4.2 (4.3, (4.4), (4.5, and(4.8)] is still not tractable ana-
lytically we can further progress as we are interested here in
articular situations withlarge macroions diffusing much
more slowly than thésmal) coions and counterions. Typi-
cally, this corresponds td,=D¢1000=10 ?m?s for
macroions in the micrometer range, whereas the electro-
horetic mobilities(x_ , ©, , anduy,) have usually similar
merical values at high ionic strength. Hence the relative
eight of the stabilizing diffusive term is much less impor-
tant in the macroion dynamical equation than in the corre-
sponding equations for the small ions. This means that the
nonlinearities of the electrophoretic and convective currents
N . . . are potentially much more destabilizing for the macroions
0c_+V-(-D_Vc_—u_c_E+c_v)=0, (4.3 [Eq. (4.4)] than for the small ion§Eqgs.(4.2) and(4.3)]. We
therefore expect that, at some intermediate electric field, the
dom+V-(—DyV oy +zupnvyE+vyv)=0, (4.4  €ssential nonlinearities of the system lie in the macroion
Smoluchowski equation(4.4) whereas the conservation
where the nonlinear electrophoretic currents couple these dyduations for the small ions can be linearized as discussed in
namic relations to Maxwell’'s electrostatic relatiofin the ~ Sec. lI[Egs.(2.6) and(2.7)]. Namely,
absence of magnetic field

A. A three-charged-species model

whereD\, andzyuy are respectively the diffusion constant
and the electrophoretic mobility of the macroions. At thes
scales we also have,=cy, /Ny, wherecy, is the concen-

tration profile of the(monovalenk charges associated with
the macroions and\Ny the number of elementary charges
per macroion. Hence the complete three-charged-speci
electrohydrodynamic system can be modeled with three cony,
servation equations,

9C.+V-(~D,VC,+u C E+civ)=0, (4.2

9 S—DAS— uEq-VR=0, 4.9

. e
V-E=—(c+—c_+chM)=p—, (4.5 - - T
€€g €€g IR—DAR— uEy-VS—pu2¢cV-6E=0, (4.10
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8tvM+ZM,U,M|§O "SVM"_vS'(_DM'SVM‘FZM/.LMVM&é
(4.11
where we again assumdd,, =D _ =D (with Dg>Dy,;) and

pme=u_=pus=Dgel/kT for simplicity [13]. As previously
we defineS=é6c, +d6c_ andR=46c_—éc, .

+ VMl;):O,

Hence the nonlinear dynamic equation for the macroions

[Eq. (4.1D)] is now coupledyvia SE andz;) to alinear PDE
system[Egs. (4.5), (4.9), (4.9), and (4.10]. Although the
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- 3ee a? N
a 0 MsMm L
(UkC>N—NM37C37E(—Ika)
(—ikXEg)(—ik-Eg)®
X 2 , (4.15
- ZykT -
<5EEC>~NMe2—CSIka. (4.16)

3. Linear stability

global system remains insoluble analytically, we can still

progress with further approximations as we will now discuss. Let us first consider some small spontaneous fluctuation,

Consider some large scale spontaneous fluctuation of thévy , around the uniform macroion concentratiof},. From

macroion distribution with typical wave vectar(k~1>a). Eq. (4.12 we find thatévy, follows at first order the follow-

Under strong electric field we expect—from the discussionng dynamical equatiofsince SE(»2)=0 anduv(+$)=0]:

of Sec. ll—that the primary electrophoretic motion of this

macroion density fluctuation generates some large scale per- (4.17)

turbations of the salt concentration. If we further assume that

the dynamical evolution of this macroion density fluctuation\yhich becomes in the dc limit reginfesing Eq.(4.14)]

is much slower(in the electrophoretic moving framehan

the response of the salt distributi@re., if significant evolu- ,U«fﬂ)
Ms™ ——

Ms

dtﬁvM_DMA(SVM‘FZMMMVﬁﬂvS' 5@20,

0
NMVM - >

di+2zpm C Eoq-V
S

5VM - DMA(SVM:O
(4.18

tions of the macroion distribution occur at long time scales
t>1/Dk?) we can then estimate the electric field perturba-

tion SE and the electrohydrodynamic convecti;nrmsing the . o . _
results of Secs. Il and Il where we assumed a uniform elecand in the ac limit regimé¢using Eq.(4.16)],
trophoretic transportation of some undeformable macroion

profile: cy(r,t)=cy (r —ro(t)).
Using Eq.(2.20 and, e.g., Eq3.6) to estimateSE andz;,

respectively, one can then check that this assumption of

“quasistatic” salt perturbatioriin the moving framgis usu-
ally well verified in practical situationgthat is, Dyk, v,

unm OE<DK). Hence, the long time dynamics of the macro-
ion distribution can be estimated, in the moving frame

(di=0ditzypm EO -ﬁ), by the following nonlinear dynamic
equation:

dtVM_DMAVM‘i‘ZM,lLM'S'(VM5E)+;'€VM:O,

(4.12

Nm Vﬁn umkT

dtévM— 2c
S

Dy+

) ASvy=0. (4.19

This shows that,, does not exhibit any “classical” in-
stability in the small ions’ “quasi-static” response approxi-
mation since no exponential amplification of small
modulations—around the perfectly uniform distribution
vf\),l—is predicted from Eqs(4.18 and (4.19. In fact, one
can show by a straightforward but tedious calculafit]

that the general system, Edg.2), (4.3, (4.4), and(4.5), is
itself linearly stable. We will, however, argue in the follow-
ing subsection that the actual three-charged-species system
might nonetheless be “unstable” once we take into account
the so far neglected effects of stochastic fluctuations on the

where 6E(vy) andv(vy) are evaluated, as in Secs. Il and macroion dynamics.

[, by solving the remaining linear PDE systdifqs. (4.5),
(4.9, (4.9, and (4.10] with the assumption that, under a

strong electric fieldio, the short time scale dynamics oy
is a uniform electrophoretic migration, i.e.divy

=0vmt ZyMm EO -Vvy=0, as for the case of an undeform-
able macroion(Sec. I)).

From Secs. Il and Il we have the following in Fourier
space(with vg=Cg/Ny).

(i) In the dc limit case, i.ek *<Dk/w<uyEqy/w,

jdo @ﬁa_z(_nz ~)X(_”ZXEO)(_”Z'E0)
Yk M2ce um 27 Yk K2 ;
(4.13
=dc ps  um| —ik-Eq —ikwg
S0E:"~—N ———)— 4.1
k M MM Ms k2 2Cs ( 4)

(i) In the ac limit case, i.ek ™ '>max(uyEq/w,\Ds/ ),

4. Noise-driven pattern formation

The formation of interesting noise-driven patterns has al-
ready been shown to arise from nonlinear stochastic PDE
with no deterministic destabilizing term. The idea originated
with the seminal paper of Kardar, Parisi, and Zhdd§]
who proposed that interfaces growing under noisy ballistic
deposition of particles undergo sorkimetic roughenindol-
lowing universal dynamic scaling lawdue to the large scale
dominance of a nonlinear term in the stochastic equation
describing the deposition proce@ee alsd?20]).

In the general case, the “stability” of the large scale be-
havior of the linearized stochastic equation against the inclu-
sion of nonlinear terms can be probed by the simple tech-
nique referred to agower countingntroduced in the context
of the renormalization group theory. Nonlinear terms whose
importance at long time and large scales vanishes under res-
caling are said to birelevantfor the long time, large length
scale dynamics of the system and can usually be omitted. On



5698 H. ISAMBERT, A. AJDARI, J-L. VIOVY, AND J. PROST 56

the other hand, nonlinear terms “growing” under dynamic cur at smaller length scales than the distaadsetween the
rescaling cannot be generally neglectéd contradiction confining surfaces of the Hele-Shaw cell. Below this hydro-
with the classical analysis of linear stabi)itgince they dynamic screening length, we estimate the behavior of the
modify the long time, large scale dynamical behavior of theelectrohydrodynamic flow by changinga?/into k? in the
system. Stokes equatiofthat is, assuming a perfectly infinite system
A more gquantitative analysis involving dynamical renor- without hydrodynamic boundary conditions
malization calculation$19,21] relies, however, on the as- For the spatial dimension of interest hedes 3, we find
sumption that the stochastic properties of ¢{feading noise (see Appendix B that the non-linear temﬁ_(&jM 5@) is

term are invariant under rescaling. This condition can conyyaysirrelevant whereas the electrohydroconvective term
ceivably be fulfilled when the noise sourceeisternalto the - - . . - L
-V évy is relevantin the unscreenedic limit regime(i.e.,

otherwise deterministic system as in the case of a growing _; ~1 . .
interface under random deposition of particl&$]. This is g <a and k™ “<Dkiw<umEq/w) butirrelevant in all
the other regimesi.e., screened dc limit, screened and un-

to be contrasted with the case of systems exhibiiiigrnal L ' .
noise[22] that typically originates from the fact that they screened ac limit regimgsThis result demonstrates that the
iffusive stabilizing term—D A vy, is not sufficient to en-

consist of discrete thermally agitated particles, as for théj

three-charged-species system in which we are interested e _the _stability of an initially homogene(_)us macrqion dis-
tribution in the presence of both stochastic fluctuations and

this paper. Indeed the effect of such internal noise on non i ) .
electrohydroconvectiof25]. This suggests that the nonlinear

linear systems leads to delicate conceptual questi@gs : v h ial role in the d
and we expect in particular that internal noise sources chan nv_ectlve term may _ac_tua y have a crucial role in the dy-
amical processes within the macroion dispersias sup-

their stochastic properties under dynamical rescaling. Still, &

a qualitative level, we can identify the potential relevance in_orte(_}l by simple estlmanons of Ordefs of magmtu_d_e |n. the
the inclusion of nonlinear terms against the presence of afituations corresponding to the experimental conditions; see

(interna) noise source with specific stochastic properties. Appendix Q In genergl,hwe therefore expe(it that th'sl eleg-
The primary internal noise we are interested in to test thdroconvective term might generate some large scales dy-
relevance of the nonlinear terms in our three-charged-speci mic patt.erns.from t.he spontaneous thermal fluctuations in
system is clearly the thermal noise responsible for the thef€ macroion dispersion. : .
modynamic fluctuations at equilibrium. For simplicity, we On the qualitative level this dynamical seg_reggtlon pro-
will limit our discussion to therealistio asymptotic regime CEsS \_/vould Ibebable tq a;co.unt for the following important
where the effects of stochastic fluctuations and nonIinea?Xpe”megta do selrvatlforﬁ 71 lectric field conditi
terms are restricted to the dynamic equation of the slow dif—h (1) tJn. er cdor ow frequency ac e'e(_:tnc leld conditions
fusing macroiongwith “quasistatic” responses of the small € Solution undergoes sonsearse grainingprocess gener-
ions, as previously discussedFollowing van Viiet's ap- ating denser macroion regions until the size of the globular
proach to density fluctuations in diffusive systefzd] we  S€9regated regions typically reaches the spacing lenge

therefore add to the deterministic linearized equatignsg  Ween the confining walls, that is, the hydrodynamic screen-

) - , ing length. The fast coarse graining process then stops in
and(4.19 the (therma) noise sourcd(r,t) with the follow- 553060t agreement with therelevance of the nonlinear
ing first two moments:

convective term at larger scalks*=a, as we cross from a
3D unscreened hydrodynamic regime to a screenediorae

(f(r,H))=0, (4.20 Hele-Shaw cell or capillariefl]).
- - 0w2ed > = (2) At higher frequency, when the periodic drift of the
(F(r,Of(r,t))~—2Dyry V2Ur—r")s(t—t"), macroions is smaller than the typical hydrodynamic screen-

(4.2)  ing lengtha enforced by the experiment geometry, we ob-
served that the coarse graining process may stop in the di-
rection of the electric field before it reaches the sizas is

- >, 012 cd/ | O , clearly visible in the observations on DNA solutions in cap-

(fkDF(K' 1))~ 2Dk (k+ k") S(t -t )’(4 22 iIIarieZ showing disk-shape aggregates thinner than the cpap-

' illary diametera [1]. In the dynamic scaling picture this
whered is the spatial dimension. This leads in particular towould correspond to the crossover of the nonlinear convec-
the expected thermodynamic density fluctuations for arfive term from itsrelevant(dc limit) behavior at short length

“ideal gas” of macroions(since all interactions have been scales(i.e., fork <D k/w<uwEq/w<a) to itsirrelevant

or in Fourier space

neglected] (ac limit) behavior at larger scalése., fork *> uyEq/w).
(3) Finally the comparison between thislevantnonlin-
2 - S - I
<5V|v|>l/2 1 ear termw - Vy, in the unscreened dc limit and the diffusive
0 o (423 giabilizing term—Dy V2ry | ted to gi d
e \/vMV g te mV<ry is expected to give some order

of magnitude of the experimental electric field threshold for
whereV is the volume of the observed subsystem. this electric-field-induced “segregation” to occur. Taking
The study of the relevance of the nonlinear termsk *=(wy) *andDy=kT/(7Ry), we find

ﬁ-(évM 5I§) andJﬁévM added to the linearized stochastic

equation for the macroion density fluctuations is performed T
in Appendix B. As we have mentioned in Sec. Ill, the “ag- Er=\ /—Csm (4.24
gregation” between individual macroions should already oc- eeoRgNp(vm)
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macroion fluctuation dynamics in this regint@ee Appendix

C). After about 1 s, the symmetry of the deformation is spon-
taneously broken and a quasistationary dynamical regime is
reached, exhibiting elongated aggregates tilted with respect
to the direction of the electric field. Finally, after a few more
seconds, the diffusion slowly wins over the long time scale
dynamics as expected in the Hele-Shaw approximatee
previous sectionand the tilted aggregates progressively dis-
appear. Remarkably, we note that the quasistationary regime

R corresponds to & 60° tilt angle of the elongated dynamical
28 aggregates with respect to the field, which we identified in
Sec. lll as the stationary regime corresponding to rtai-
mum shearing of the bandlike aggregat@his suggests that
gg these quasistationary dynamical structures are actually gen-
8B erated and sustained by abhrasionmechanism at the aggre-
gate interface that tends to “facet” the macroion-rich re-
g gions at the angle corresponding to the most efficient
ok abrasion process, that i8=*=60° in the ac limit regime.

Such a mechanism is indeed expected to dynamically whittle
down or gradually cover the interfacial regions of the aggre-

y gate that are not oriented along the direction of fastest elec-
conditions are used. Time scaléshen the known values of the trOhy_drOdynamiC convection at the interface’_ thu§ eventually
experimental parameters are Useth) t=0s; (B) t=0.1 s; (C) faceting the whole aggregate along these directions of most

t=1.5s; (D) t=3 s (quasistationary regime* x" indicates that  €fficient abrasion process.

the local probability density is at least one-tenth of the maximum of 1he system dimensions, combined with the periodic
the initial distribution. boundary conditions we have used in the numerical calcula-

tions, tend to fix the zigzag pattern periodicity for systems of
for a dilute solution of macroions. Numericallig; is a few medium sizes, as shown in Fig. 5, however, we checked—
tens of V/cm for a 3Qug/ml \-DNA solution in good agree- performing (less accyrat)ecalculatlons in bigger systems—
ment with the experimental onset of aggregation. Note als¢hat these chevron-like patterns can appear even before the
thatE decreases with the macroion siJ, charge Ny,), deformation of the macroion-rich region reaches the system

and concentration(,) in qualitative agreement with the ~€dges” (data not shown ,
experimental observationa]. This numerical solution of the large scale evolution of an

More quantitative progress requires, however, the use dhitially Gaus§ian macroion—rich. region is. clearly in' good
more sophisticated techniques such as the dynamic renorm&dreement with the corresponding experiment depicted on

ization group theory and we do not address further the agF!9- 6 In this experiment, a DNA aggregate, previously
gregation problem herk28]. formed under strong electric field, has been left to diffuse for

about 1 minute after the electric field was turned off. A
_ strong electric field is then reapplied on the disk-like
B. Numerics macroion-rich regionEy="500 V/cm andw/27w=100 H2),

Although we have seen in the last subsection that Egwhich deforms first perpendicularly to tiiborizonta) elec-
(4.12 does not account for the primary segregation procesgfic field. However, this symmetric elongation is unable to
we still expect it to give us some understanding of the largdead to any stationary dynamical regime and the aggregate
scale evolution of a preexisting macroion-rich segregated reeventually breaks, after about 1(lsy spontaneous fluctua-
gion under strong electric field. We have therefore solvedion), to form a stable quasistationary zigzag pattern where
Eq. (4.12 numerically, in the Hele-Shaw approximation, for the continuously sheared long aggregates have indeed a
some initially segregated domains of simple shape. The cal-60° angle of tilt with respect to the field as for the case of
culations are performed in Fourier space with an extensiv&ig. 2 corresponding also to the ac limit regirfieit starting

FIG. 5. Numerical evolution of an initially Gaussian macroion
distribution induced by the application of a strofigprizonta) elec-
tric field in the analytic ac limit regime. Spatial periodic boundar

use of the fast Fourier transform algoritH2g]. initially from a dispersion at equilibrium, i.e., with thermo-
Figure 5 shows the time evolution in the ac limit regime dynamic fluctuations _ o .
of an initially 2D Gaussian distribution of macroiofise., Figure (7) is the numerical quasistationary dynamical

> structure formed, in the dc limit regime, from an initially
Eas. (6:15) and (4'16)_ have been used to eyaluatg(v,\,,) Gaussian macroion distribution. The45° angle of tilt be-

and 5E,(vy) respectively. The known experimental values yyeen the continuously sheared long aggregates and the elec-
of the various physical parameters have been used in thgic field also clearly demonstrates good agreement with Fig.

calculation and the electric field frequency and amplitudel, depicting the experimental observations in the dc limit
have been chosen to correspond typically to the experimentahgitions.

ac limit regime, namelyE;=500 V/cm andw/27=100 Hz.
Within a tenth of second the initial Gaussian distribution is
symmetrically elongated perpendicularly to the direction of
the (horizonta) electric field. This is due to the convective  We have developed in this paper the basis of a theoretical
electrohydrodynamic flow, which is shown to dominate theapproach to describe tharge scale, long timelectrohydro-

V. CONCLUSION
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small parametecy, /¢4 (electrolyte of high ionic strengiho
expand the nonlinearities in the coupled equations.

(iii) As the macroions diffuse usually much more slowly
than the small ions of the electrolyige., D,<D,), the
coion and counterion concentrations respond quasistatically
to the slow dynamics of the macroion density fluctuations
described in the reference frame moving at the electro-
phoretic velocity of the macroions.

(iv) This leads, in particular, to some large length scale
perturbations of the local salt concentratiSrin the disper-
sion (i.e., electrodialysis effegt which we have evaluated
analytically in two limit regimes. dc limit re-
gime: L<D¢/(Lw)<umEo/w; ac limit regime:
L>max(uyEq/w,vDs/w), wherelL is the typical spatial
modulation of the macroion fluctuation along the direction of
the applied electric field.

(v) Under electric field, this salt perturbation profile is
also “polarized,” leading to the violation of strict electro-
neutrality over large length scales in the electrolyte,

Pes= — ssoéo -VQS/ZCS (Sec. I).
(vi) The electrical body force arising from the coupling
FIG. 6. Experimental evolution of an initially quasi-isotope  between this large scale charge density and the applied elec-

DNA-rich region (about 10um in diametey under the sudden ap- tric field i.e., Peséo at first order incy, /c4] is then able to

plication of a strong ac electric field in the horizontal direction: field triqger some electrohvdrodvnamic flows in the solution

amplitude 500 V/cm and frequency 100 HZA) t=0s; (B) g_g . y. y . . L

t=0.5 s:(C) t=1.5 s: (D) t=3 s (quasistationary reginie which can be described in the experimental regimes of inter-
' ' est by a simple Stokes equation in the moving reference

kinetic phenomena occurring, under strong electric field, in grame, 7Av — VP +pe Eq=0. In particular,v has been de-
dispersion of macroions in a simple electrolyte of high ionictermined analytically in the Hele-Shaw approximation for a
strength. quasi-2D confined geometfgec. IlI).

The main ideas and approximations of this approach can iy The resulting quasistatic electrohydrodynamic flow

be summarized as follows. . . -
(i) The macroions’ charges are described, at large lengt nd the local correction to the applied eI_ectnc fieddt, are _
then used to evaluate the slow dynamics of the macroion

;cales, .by- a smooth concentrgtion proft_lg,(r,t), depend- fluctuations self-consistenthEqg. (4.12) in Sec. V.
ing a priori on the space and time coordinates, and the short \ye have numerically solved the self-consistent nonlinear
scale electrokinetic phenomena are taken into account ph%’ynamical equation for the macroion fluctuatiofigq.

nom.e-nologically by the ir_1troduction of an electrophoretic(4_12,] in the Hele-Shaw approximation. This demonstrates
mobility p for the macroions. _ ___the ability of our theoretical model to account for thg-
(ii) The difficulties of the coupled nonlinear electrokinetic namic selection processy which an initially disk-shaped

equations are overcome by considering that the macroiongqqregate acquires its eventual quasistationary zigzag struc-
merely generate small perturbations on the already out-ofg o with tilt angles of+60° in the ac limit regime and

equilibrium situation of the simple electrolyte (=c-=Cs)  +45° in the dc limit regime. In addition, we predict, not

under a strong electric fiel&, . We then use the supposedly only the correct sign of recirculation in the tilted aggregates
(similar in both regimes and independentzgf, the sign of
the macroions’ charggésbut also the correct orders of mag-
nitude for the time scales and recirculation velocities, when
experimental values of the various parameters are used.
This good agreement with the experimental observations
in both ac and dc limit regimes strongly suggests that the
large scale dynamic selection process at work in these vari-
ous colloidal or polyelectrolyte solutions under strong elec-
tric field is indeed related to the nonlinear coupling between
X the macroion density fluctuations and the associated electro-
hydrodynamic flows, as discussed in Sec. IV. Moreover, we

FIG. 7. Numerical quasistationary structure, obtained from theh@ve suggested that the same nonlinear coupling might also
evolution of an initially Gaussian macroion distributi¢as in Fig.  Pe responsible—through a noise-driven dynamical process—
5), induced by the application of a strofigorizonta) electric field ~ for the primary segregation mechanism itself, as it is shown
in the analytic dc limit regime. Spatial periodic boundary conditionsto dominate the large scale, long time stochastic dynamics in
are used. < indicates that the local probability density is at least a 3D environmentAppendix B.
one-tenth of the maximum of the initial distribution. Although some important aspects of these segregation and

RRXRK
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patterning processes remain to be more thoroughly investi-

gated[30], we believe to have already gained some physical UTM]_%{.;SOE Ladl) M r,
insight into these electrohydrodynamic phenomena. This will K 7 Ms  2Cs

have to be further tested through more quantitative experi- Eo #um Eo

mental studies[31,32. If confirmed, this understanding ~ggg— — =—Cm

should allow improvements of the capillary electrophoresis 7 s 2C T

separation technique. More generally, we expect that the (2) The polarization of the salt perturbation proffiagen-

Iarlge Iscalel perturlba_t|ons ofdlomcl dlst_nbfgtllgnshln f;uo'dal,orerates, on the other hand, shearing over the micrometer range
polyelectrolyte so ut|on§ un k?r € elctrlc e ‘Qi ou a\ée 'M"scale, which is the typical extension of the salt perturbation
portant consequences in other related problems such as ¢ 1o vicinity of the migrating macroions, i.e.,

behavior of electrorheological fluids or the interpretation ofy I(upEo)=1—3 um in Eq. (2.19. Hence, the contribu-
dielectric constant measurements in colloidal dispersiong, v of the salt profile polarization to the large scale elec-

[12]. trohydrodynamic flow can be similarly estimated as
Vs EO éo . 65 EO EO
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Hence we have  <v s in most practical situations, suggest-
ing that the contribution to the large scale convection, di-
APPENDIX A: ELECTROHYDRODYNAMIC FLOW AND rectly associated with the macroion electrophoretic migra-

OUT-OF-EQUILIBRIUM CHARGE DENSITY tion, is generglly negllglb[e as compared to the contrlbutlon
associated with the polarization of the salt perturbation pro-

The main contribution to the large scale electrohydrody-file far beyond the Debye layers, i.es~vs. At large length
namic flow in the macroion dispersion is further discussed irscales, k '>«~1, we can therefore simplify the Stokes

this appendix. equation as
We assume for the sake of simplicity that the primary o .
electrophoretic migration, associated with the counterion nAv—VP+pe Eo=0,

equilibrium distribution, doesiot generate any flow in the

solution on length scales larger than the Debye length, with

as for the case of dfree-draining” electrophoretic migra- ..

tion [11]. This assumption implies that the large scale elec- pe,= —&&0Eq - VSI2Cs.
trohydrodynamic flow is related to the out-of-equilibrium
charge density. As the salt perturbation profitey. (2.19]
becomes S~ —(us/upm)Cy in the strong field limit
Eo>Dgk/uy, we find, from Eq.(2.20, that thedynamic We study in this appendix the relevance of the nonlinear
charge density arising from the electrophoretigrationof  terms for the slow dynamics of the macroion density fluctua-
the macroiong[i.e., —esq(um/ms)Eo - Veu/2es] and the tions starting from the nonlinear dynamical equati@dn2
charge density associated with th§ elgctric polarization of theith the additionalconservativethermal noisd‘(F t) intro-

salt perturbation profiléi.e., —eeoEq - VS/2c,) are of simi-  duced and discussed in Sec. IV A,

lar orders of magnitudéu,, and s usually having similar .. . R
numerical values We expect, however, that the magnitudes d;dvy—DyASvy+2zyum vﬁAV SE+zyumV - (6vydE)

of the electrohydrodynamic flow originating from each of .o .

these two charge density sources are, in fact, very different. +v-Vovy+f(r,t)=0, (BY)
This can been shown by integrating the Stokes equation once . . ..

over the typical extension length of the flow gradient generwith (f(r,t)f(r’,t"))«V289(r—r")8(t—t’), whered is the
ated by each of these charge density sour¢es., spatial dimension. Investigating for possible dynamic scaling
|V5|~(E0/77)fpedrl]. behaviors of Eq(B1) (ask—0 andt—«), we assume that

(1) The dynamic charge density originating from the mac-the change of length scale,—>bF, is accompanied by the
roions electrophoretic migration generates, in practice, sheafellowing changes of time scal¢—b*, and macroion den-
ing over the Debye length scale !, because of the spatial sity fluctuation 5vy,—bX8vy,, wherez is the dynamic ex-
proximity of the boundary conditions on the actual macroionponent that describes the scaling of relaxation times with
surface. Its contributiony ), , to the large scale electrohydro- length, andy is the analog of the “roughening exponent” for
dynamic flow can therefore be estimated as a growing interfacg19].

APPENDIX B: RELEVANCE OF NONLINEAR TERMS
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We then get the dynamic scaling behaviorso&fandu in bX~2d,Svyy — bX 2D}, A Sy + 02X 22y, 1 V - (Swyy OE)
Eq. (B1) using Egs.(4.14 and (4.16 and Egs.(4.13 and o _
(4.15), respectively. We recall that tHelectrohydraconvec- +bX 1Ty Vo +b 1 927 22¢(r t)=0,

tion given by Eqs(4.13 and(4.15 is valid only beyond the
hydrodynamic screening lengthin the Hele-ShawHS) ap-  that is,
proximation(i.e.,k~1>a). For the sake of generality we will

also study the scaling behavior of this term with hydro- dy Sy —b? 2D}, A Svy + b2 2 X2y V - (Svpy OE)
dynamic screeningNS). One can show that this amounts to o .
simply changing 242 into k? in Egs. (4.13 and (4.15. In +b? 1Ty . Ve +b 1 2+ 227Xf(r t)=0,

practice this regime will correspond to length scales smaller
than the hydrodynamic screening length, ile.l<a. We
find the following

(i) In the dc limit regime[from Eqgs.(4.13 and (4.14)],

(B3)

where D{, =Dy (1+{Ny ¥ /2cH{ uukT/eDy}) is an ef-
fective diffusion constant taking into account the electric
field perturbation effectfsee Eq.(4.19]. With afisz=x—3

in the Hele-Shaw approximation aneg{s=x—1 on length
scales shorter than the electrohydrodynamic screening

SEXxp,  hence SE%*—bXpy,

v <kr hence vi—b¥ tuy, length.
In the absence of the nonlinear terms, E@2) and (B3)
vgc%ockfl,,k hence vi—bX*1yy,. are made scale invariant, as expected, upon the following

choices for the dynamic scaling exponents,

(i) In the ac limit regimgfrom Egs.(4.15 and(4.16)], 2=274=2
SEf%ky, hence SE*—bX 1y, d z d

X=Xo=—1l-5+5=-3.

. 2'2° 2

vis <k°r hence vig—b Py,
We then obtain the ‘“scaling dimension” of the nonlinear

vﬁ,%(ockvk hence vigz—bX luy. terms,zyumV - (8vy SE) andv -V évy, , added to this scale-
invariant equation, as follows:

Assuming that the noise keeps its uncorrelated features under (i) In the dc limit regime,
rescaling(as expected at least as long as the nonlinear terms R .
do not dominateimplies the following change of scale for Zp—1+xo=(2—=d)/2 for zyumV-(SvydE)

fp~t-d2- 22 Zo—l+agc=1+a8° for ;-ﬁévM,

After this rescaling Eq(B1) transforms to the following:  with a%,= xo—1=—(d+2)/2 in the Hele-Shaw approxi-

(i) In the dc limit regimeusing Eq.(4.18)], mation and a3°%s=xo+1=(2—d)/2 on length scales

R ) shorter than the electrohydrodynamic screening length.

bX~ 2D 8wy —bX 2Dy A vy + 02X 1z unV - (8w SE) (i) In the ac limit regime,
+bX LTy Y Sy 4+ b1 927 226 (f 1) =0, 2g—2+xo=—d2 for zyuwV-(SvydE),
that is, zo—1+af=1+af® for v-V
0 ag ayg for v-Véry,

D Sy —b? 2Dy A Svy+ b7 1 Xz V - (Svpy SE) with a2°,c= yo— 3= —(d+6)/2 in the Hele-Shaw approxi-
iat @ 4t 2 ver® mation and a§°\ys=xo—1=—(d+2)/2 on length scales

+b* "% - Vévy+b X(r,t)=0, shorter than the electrohydrodynamic screening length.

(B2) If the scaling dimensions of both nonlinear terms are

negative the nonlinearities scale to zero and are said to be
irrelevant so that the solution should remain uniform at
large length and time scales as predicted by the linear stabil-
ﬁy study. [In principle, such situations might also lead to
- “strong coupling regimes fdicoupling parameters exceeding
rections in electric field, zyumEo[1+({us/um}  a finite threshold19,20.] On the other hand, if the scaling
—{mm/ps) (N vy 12c9)] [see Eq(4.18], with afs=x—1  dimension of at least one of the nonlinear termpdsitive
in the Hele-Shaw approximation amﬂcsszrl on length  this term grows under rescaling andraevantfor the long
scales shorter than the electrohydrodynamic screeninggme, large scale dynamics. Nontrivial dynamic exponents
length. are expected in this case but their estimation through the
(i) In the ac limit regimdusing Eq.(4.19] dynamic renormalization technique is involvgzB].

that moves at uniform velocity, taking into account the cor



56 ELECTROHYDRODYNAMIC PATTERNS IN MACROION . .. 5703

One finally finds for the relevance of the nonlinear termswhen the following double inequality holdsve compare,
[25]: e.g., Egs.(4.15 and (4.16 and the diffusive termD Kk,

(i) In the dc limit regime, the electrophoretic term with the ac limit constraintk > uyEq/w],
ZMMMﬁ-(ﬁvMEE) is relevantfor d<2 [i.e., (2—d)/2=0] ) 25
and the convective term- V 5vy, is irrelevantat any dimen- 1“2 3 ps eEoEea min
sion in the Hele-Shaw approximatigie., fork~*>a since mmES R2um 7
—d/2<0) andrelevantatd<4 [i.e., (4—d)/2=0] on length
scales shorter than the hydrodynamic screening length, i.eThis typically holds fork *=a=10 um, and an electric
k~'<a. In particular, in thed=3 case, which we are inter- field of 300 V/cm and 100 Hz in agreement with the
ested in here, we predict that the electrohydrodynamic corexperimental  conditions ~ for A-DNA  solutions
vective term dominates the long time scale dynamics in théum=3x10"2 m*V~ts™! 4 =~10""m*V s Dy
dc limit regime on length scales shorter than the electrohy=10"**m?s™, ¢y _/2c=10"?, 5=10"°Pas, and
drodynamic screening length. eeo=10 " Fm?Y).

(i) In the ac limit regime, we predict, however, that both  |n the dc limit regime, i.e.k <D k/w<uyEqy/w, we
nonlinear terms are irrelevant at any dimension or lengthind similarly that the electrohydrodynamic convective term
scales, i.e.k"'>a in the Hele-Shaw approximation and dominates the dynamics when the following two inequalities
k~!<a for length scales shorter than the electrohydrody-hold [we compare, e.g., Eq&t.13 and(4.14 and the diffu-

CM oy e

ZCSDM ’ kT,U.M

namic screening length. sive term,D k],
APPENDIX C: ORDER OF MAGNITUDE oo E a_2 u?
OF THE NONLINEAR TERMS 0 0277 MM(Mg_I—Lfﬂ) !
We show in this appendix that the nonlinear electrohydro- ,
dynamic convective term, v ﬁévM , dominates the Do < ps £80Eqa” CM oy
macroion density fluctuation dynamiés the moving refer- M 7 4cg -
ence framg in the conditions of experimental observation
with DNA solutions. This also typically holds in the experimental conditions with
In the ac limit regime, we find that this term dominatesthe A-DNA solutions.
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